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Abstract

We consider an overlapping generations model where continuous cultural
traits are transmitted from an adult generation to the children. A weighted social

network describes how children are influenced not only by their parents but also
by other role models within the society. Parents can invest into the purposeful so-
cialization of their children by strategically displaying a cultural trait (which need
not coincide with their true cultural trait). We observe a cultural substitution
effect when parents choose their behavior optimally. Based on Nash equilibrium
behavior, we then study the dynamics of cultural traits throughout generations.
These converge if parent’s influence on their children is large enough compared to
the social environment’s influence. Under convergent dynamics, closed subgroups
fully assimilate, while heterogeneous traits prevail in the other groups. Speed of
convergence is low when parents’ incentives to socialize their children to the own
trait are high.

Keywords: cultural transmission, continuous cultural traits, social networks, persistence
of cultural traits, opinion dynamics
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1 Introduction

Economic behavior and outcomes are fundamentally shaped by individual value systems
such as culturally transmitted preferences, attitudes, opinions, beliefs, etc. For instance,
risk preferences and patience are classical determinants of economic decisions. It is even
shown that inherited trust is a major factor in determining economic growth (Algan
and Cahuc, 2010; Tabellini, 2010). The question of how these traits are formed and
evolve is hence of central interest.
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In this paper, we provide a theory of the evolution of cultural traits. In contrast
to most of the literature (see Bisin and Verdier, 2010, for a comprehensive survey),
we model cultural traits as a continuous variable rather than a discrete variable. This
modeling approach better reflects the continuous nature of cultural traits such as risk
preferences, patience, and trust. That these traits are rather modeled by a continuous
variable becomes evident when considering e.g. Arrow-Pratt measures of risk aversion,
or discount factors in [0, 1] as measures of patience.1 To model the evolution of these
traits across generations, we employ an overlapping generations (OLG) society. Parents
care about their children’s adopted cultural trait and have a desire that this adopted
trait is close to their own trait, an assumption called imperfect empathy in the litera-
ture.2 Following empirical evidence (e.g. Dohmen et al., 2012), children are assumed to
learn from observable cultural traits of their parents and of their social environment,
represented by a social network. Surprisingly, this local aspect of trait formation has
largely been ignored in the literature on formation of cultural traits even though empir-
ical evidence suggests that the social network plays a crucial role: first, Dohmen et al.
(2012) show that the degree of risk aversion and trust can not only be explained by the
parent’s risk preferences and trust attitudes, but also by the level of these traits in the
local social environment; second, the fact that cultural traits often differ across geo-
graphic regions, e.g. cities (Guiso et al., 2008; Voigtländer and Voth, 2012), or countries
(Algan and Cahuc, 2010),3 is difficult to explain without modeling a local structure.
Finally, social connections also seem crucial for questions of persistence of cultural traits
and of assimilation as we discuss below.

Emphasizing the social network and the socialization incentives, or in other words,
the degree of imperfect empathy, we use our model to study (i) how cultural traits
evolve, (ii) under which conditions heterogeneous or homogeneous societies emerge,
and (iii) how long this process takes before settling down.

These questions are motivated by empirical studies that provide substantial evi-
dence that some cultural traits are persistent throughout many generations. For the
example of trust, Guiso et al. (2008) report persistence of trust levels in various Ital-
ian cities, Nunn and Wantchekon (2011) show that (mis-)trust attitudes in African
families are prevailing throughout many generations resulting from slave trade history,
and Voigtländer and Voth (2012) find that (mis-)trust attitudes towards the Jewish
population persisted over many centuries in German cities dating back to the 14th
century.4 Moreover, immigrant families in the United States are shown to retain their
trust attitudes throughout many generations (Algan and Cahuc, 2010) if connections
to their country of origin are kept. Importantly, not only the formation of cultural
traits (Dohmen et al., 2012), but also the evolution of cultural traits and the question

1Also trust attitudes can be measured on a continuous scale representing different intensities of
trust ranging from attitudes such as “you can’t be too careful” to attitudes like “most people can be
trusted”.

2Imperfect empathy means that parents care about their children, but evaluate their (the children’s)
actions through the own (the parental) utility function (Bisin and Verdier, 1998). This will imply that
parents want their children to become as they (the parents) are.

3Note that also within regions strong correlations of cultural traits are observed (Dohmen et al.,
2012).

4Persistence is also documented for other cultural traits such as attitudes towards female labor
force participation (Fernandez et al., 2004; Alesina et al., 2011), fertility (Fernandez and Fogli, 2006;
Cygan-Rehm, 2012), and a preference for education (Botticini and Eckstein, 2005).
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of persistence seem to be highly dependent on social connections.5

A theoretical explanation for the phenomenon of global persistence of cultural traits
is provided in the seminal paper by Bisin and Verdier (2001) and the following liter-
ature (see Bisin and Verdier, 2010). They show in a population dynamics framework
of dichotomous cultural traits that the imperfect empathy assumption is sufficient to
generate long-run heterogeneity of cultural traits. This is due to the cultural substitu-
tion effect, i.e. that parents exert more effort to increase the probability that the child
adopts the same cultural trait when the frequency of the own trait in the population is
lower.

Although the model of Bisin and Verdier (2001) can be generalized to a discrete
number of traits (Bisin et al., 2009), we will see that as soon as the cultural trait under
consideration is modeled as a continuous variable, the observed long-term persistence
of heterogeneous traits does not carry over (Remark 1). Thus, imperfect empathy alone
cannot account for long-term persistence of heterogeneous cultural traits. Moreover,
due to the discrete nature of traits, (partial) assimilation cannot be explained by this
model. In addition, this standard model does not include local interaction.

To bridge these gaps, we complement and extend the ideas of Bisin and Verdier
(2001) by (a) modeling cultural traits as a continuous variable, and (b) by assuming
that children learn from parents and their friends through local interaction represented
by a social network and not necessarily from the whole population. In our model, we
adopt the assumption of imperfect empathy of Bisin and Verdier (2001) which leads
parents to use costly controls to influence their children’s traits. We consider a par-
ticular socialization instrument which is derived from social learning theory (Bandura,
1977): since children learn primarily from the observed behavior of parents (and other
social contacts), we assume that the parent’s primary socialization instrument is their
behavior, or their socio-economic actions taken. When solving for optimal behavior of
parents, we show that each adult deviates from its true trait into the opposite direction
of the aggregate behavior of the environment (relative to own true trait), in order to
countervail the subjectively negative influence of the environment on its child (Propo-
sition 1). The extent of deviation is increasing with the “cultural distance” between
the parent and its social environment.6

Assuming Nash equilibrium play in every generation, we then study the dynamics
of cultural traits. First, we illustrate by a simple two–dynasty example (Section 3) how
the cultural traits evolve. We show that cultural traits converge in the long–run to a
homogeneous trait such that relative positions are persistent if children are primarily
influenced by their parents. By persistence of relative positions of cultural traits, we
mean that one family has the lower trait than the other at any point in time, e.g. one
family is always more risk averse than the other family, although in the very long run
traits become more and more homogeneous. If, however, each child is more influenced
by the other family than the own, then relative positions of traits switch from one
generation to the next. For strong enough incentives to socialize the children, this even

5For instance, Voigtländer and Voth (2012) argue that few interactions between German cities (due
to lower mobility before World War I. compared to today) are one of the main factors for persistence of
different attitudes towards Jews in different cities. For cities that were “well-connected” (e.g. German
Hanse-cities) such persistence cannot be observed.

6Analogous effects of cultural substitution are crucial in providing a theoretical explanation for
heterogeneous cultures in the framework of dichotomous traits (Bisin and Verdier, 2001).
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leads to divergent dynamics.
When allowing for more than two dynasties (Section 4), additional steady states are

possible also admitting heterogeneous cultural traits. Conditions that the dynamics
reach a steady state generalize nicely from 2 to n dynasties: convergence is guaranteed
if (i) the network is positive definite (Proposition 4) or if (ii) the degree of imperfect
empathy is sufficiently low (Proposition 5).7 Positive definiteness is implied if parents
have sufficiently high influence on their children. This rather natural assumption is
also empirically well supported (Dohmen et al., 2012). While these large socialization
weights foster convergence to a steady state, incentives to socialize (high degree of im-
perfect empathy) are detrimental for convergence in two ways. First, if the socialization
incentives are small enough, then convergence always obtains for any given network.
Second, even if convergence is guaranteed for arbitrary socialization incentives (e.g.
because of large enough socialization weights), then speed of convergence is reduced
by the parents’ socialization efforts (Proposition 6). This yields an explanation for the
persistence of cultural traits: the higher the degree of imperfect empathy, the longer
cultural traits persist (a complementary conclusion as in Bisin and Verdier, 2001).

Convergence to a steady state does not necessarily mean that we observe complete
assimilation or a melting pot society. Rather, heterogeneity of cultural traits is observed
even in the long–run when connections to more than one cultural group are given. Thus,
persistence of immigrants’ cultural traits (e.g. trust attitudes, Algan and Cahuc, 2010)
may be explained by connections into both the country of origin (relatives, friends,...)
and the immigrant country (as we will see in Example 2). This view is also shared
by Aleksynska (2011) where a particular focus is on ties to the country of origin. In a
similar way, we find a theoretical explanation for the finding that relatively disconnected
cities in Germany experienced persistence of (positive or negative) attitudes towards the
Jewish population, while well connected cities (e.g. Hanse-cities) rather are observed to
display alternating attitudes over time (Voigtländer and Voth, 2012).

Related Literature Besides the well–established literature on the transmission of
discrete traits, the literature on continuous traits is still small,8 despite its importance
for empirical applications (Bisin and Topa, 2003). Important early treatments of the
topic are Cavalli-Sforza and Feldman (1981) in a theoretical, and Otto et al. (1994)
in an empirical context. Cavalli-Sforza and Feldman (1981) propose a model where a
child’s continuous trait is formed as the linear combination of its parents’ trait and the
average trait in the society. Several models follow this approach and endogenize the
trait formation process (for recent approaches, see Doepke and Zilibotti, 2008; Vaughan,
2010; Pichler, 2010; Panebianco, 2014).

While in Vaughan (2010) and Panebianco (2014) the parent’s choice variable (social-
ization instrument) is the time spent with children, Pichler (2010) introduces behavioral
choices of parents. The first modeling choice is fully analogous to Bisin and Verdier
(2001), the latter rather reflects social learning theory (Bandura, 1977). Additionally,
Vaughan (2010) models strategic interaction between children and their peers. In our
paper, we instead consider strategic interaction in the adult generation and explicitly

7If both conditions are not satisfied, convergence is still possible, but also diverging dynamics as
outlined above for two dynasties may arise.

8See Bisin and Verdier, 2010, for a comprehensive overview of both branches of literature.
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model the social network. Panebianco (2014) studies cultural groups and their attitudes
towards each other. Since the only variable of choice is the time spent with children,
the dynamics in the model of Panebianco (2014) are given by a Markov process where
convergence is easily established without restrictions on the network. Introducing be-
havioral choices, our model yields more complex dynamics such that the law of motion
may also contain negative inter-dependencies. We also extend the approach by Pichler
(2010) from global interaction to local interaction.

Doepke and Zilibotti (2008) present a model on the inter-generational transmission
of continuous traits (patience and work ethos), which is used to explain the industrial
revolution. In particular, they show how a generation of patient and hard working
industrialists could outperform the formerly leading class of aristocrats who failed to
socialize their children to these values. In contrast to other models of transmission
of traits, including ours, this model includes feedback of economic conditions on the
formation of traits. As a consequence it does not predict convergence of traits (to
a homogeneous or heterogeneous state), but rather some kind of cycle or fluctuation
since economic prosperity reduces the propensity to transmit values that are the basis
of prosperity.

Another branch of literature related to our work is the literature on opinion dynamics
(in social networks) introduced, among others, by DeGroot (1974) (see e.g. Jackson
2008, for a discussion). In the basic DeGroot model, individuals exchange opinions
by reporting their opinions and update them according to a weighted average of other
individuals’ opinions. Convergence of opinions is then obtained under mild conditions
on the interaction structure (strong connectedness and aperiodicity). Our work presents
also a generalization of the DeGroot model such that strategic interaction in expressed
opinions is introduced. In our model, strategic interaction leads to overstatement of
opinions (Proposition 1), a similar, but less extreme behavior as in Kalai and Kalai
(2001), where polarization of opinions is obtained. As a consequence, convergence
cannot be as easily obtained as in the DeGroot model. Moreover, for the case of
convergence, we show that the speed of which is reduced by introducing this kind
of strategic interaction. This contrasts with a related model on opinion formation
(Buechel et al., 2014) and shows that socialization investments contribute to prolong
cultural heterogeneity.

2 Formation of Cultural Traits

2.1 Model

Consider an overlapping generations society which is populated by the adults of a finite
set of dynasties N = {1, . . . , n}. At the beginning of any given period t ∈ N, adults
reproduce asexually and have exactly one offspring. This standard simplification keeps
the population size constant. The traits that we consider (e.g. trust, risk preferences,
and patience) are of continuous nature (e.g. different intensities of trust, Arrow-Pratt
measures of risk aversion, and discount factors). We restrict the analysis to the trans-
mission of one such continuous trait. Hence, let I ⊆ R be a convex compact set that
contains all possible intensities/degrees of a trait. For instance, if patience is repre-
sented by a discount factor, then I = [0, 1]. Each adult is characterized by a variable
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φi(t) ∈ I, which we call its trait. Taking trust as an example, low values of φi(t) could
then be interpreted as the t-th generation of dynasty i having low levels of trust, e.g.
not trusting strangers. In a similar way, risk preferences (low values of φi(t) correspond
to low degrees of risk aversion), patience (low values of φi(t) correspond to low discount
factors), and other types of cultural traits find an interpretation in our model.

We assume that the true cultural trait is not observable. However, any adult has
to make socio–economic choices. We assume that distinct cultural traits are associ-
ated with distinct socio-economic choices. Therefore, by observing the socio–economic
choices of an adult, a child perceives the associated trait, which may not coincide
with the adult’s true trait. For instance, a parent who is very careful when interact-
ing with strangers is displaying a low level of trust. Similarly, a parent who refuses
many gambles, takes few chances and challenges in life, etc. will be perceived to be risk
averse. Instead of modeling socio-economic choices explicitly, we simply assume that
each adult chooses an observable cultural trait representing its socio-economic actions.9

We call an adult’s choice its displayed trait and denote it by φd
i (t) ∈ I. Let the vector

Φd(t) :=
(

φd
1(t), . . . , φ

d
n(t)

)′
∈ In collect the displayed traits of the adults. Importantly,

the displayed trait φd
i (t) is the choice variable of each adult and may be different from

its true trait φi(t). Naturally, we will assume that deviating from the true trait is costly,
see the assumption on parental utility (3).

Children are assumed to form their traits by learning from the adults’ observable be-
havior (see also Bandura, 1977). In particular, we consider direct socialization from the
parent’s displayed trait φd

i (t) as well as so–called oblique socialization from the child’s
social environment φd

Ni
(t), i.e. representative trait of other dynasties. Let σii denote the

weight of the parental socialization part which determines how much the child learns
from its parents (in relative terms) compared to the social environment. Factors that
determine this parental socialization weight could include the social interaction time of
the parent with its child, as well as the effort and devotion that the parent spends to
socialize its child.10 Then the trait formation process is given by

φi(t+ 1) = σiiφ
d
i (t) + (1− σii)φ

d
Ni
(t). (1)

Before further specifying the model, it is worth noticing the relation of Equation 1
to the trait formation processes in the literature.

Remark 1. The classical model of transmission of continuous traits by Cavalli-Sforza
and Feldman (1973) implies a trait formation process which can be rewritten similarly
to Equation 1 (when abstracting from a noise term): φi(t+1) = σiiφi(t)+(1−σii)φN(t),
i.e. a child’s continuous trait is formed as a combination of its parent’s trait φi(t) and
the average trait of the whole society φN(t). For discrete traits, Bisin and Verdier
(2001) assume that parents have costly controls to influence σii. In a similar way,
Vaughan (2010) and Panebianco (2014) endogenize the parental socialization weight σii

for continuous traits. However, even with the assumption of imperfect empathy (Bisin
and Verdier, 1998), convergence to a homogeneous society is inevitable when traits are

9A microeconomic foundation for this modeling assumption is given by the framework of Pichler
(2010), which we employ here without explicitly modeling socio–economic choices and their relation
to traits.

10See e.g. Grusec (2002) for an introductory overview of theories on determinants of parental social-
ization success.
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continuous which is shown in Appendix A (see also Panebianco, 2014). Hence, the
major result that under imperfect empathy persistence of discrete cultural traits holds
does not generalize to continuous traits.

Observe that our model (cf. Equation 1) differs from the standard Cavalli-Sforza
and Feldman (1973) equation above with respect to two features: First, we relax the
assumption that every child is socialized by exactly the same social environment, i.e.
instead of the societal average (φd

N), we consider individual averages (e.g. φd
Ni
). Sec-

ond, we distinguish between true traits φi(t) and displayed traits φd
i (t). The latter is

somewhat analogous to the costly controls considered in Bisin and Verdier (2001), see
also Remark 2.

As mentioned in Remark 1, we do not assume that every child is socialized by exactly
the same social environment, but allow them to have different socialization weights
on different members of the society. Consider a n × n-matrix Σ, which describes a
weighted, possibly directed, social network between the dynasties. In order to account
for relative influences, we assume that Σ is a row stochastic matrix, that is σij ≥ 0
∀i, j ∈ N , and

∑

j∈N σij = 1 ∀i ∈ N . An entry σij represents the relative importance
of adult j as a role model for child i. The social interaction matrix is assumed to be
exogenous and its entries σij can be interpreted as resulting from the relative cognitive
impact (of the socialization interactions), which can be based on interaction time or on
differing pre–dispositions of the children for the social learning from others. A diagonal
element of Σ is the parent’s weight σii on the own child’s socialization process. The
elements off the diagonal σij are used to average over the neighbors’ displayed traits
such that the representative displayed trait of child i’s social environment is given by:
φd
Ni
(t) :=

∑

j∈N\{i}
σij

1−σii
φd
j (t). These definitions allow us to restate the trait formation

process (1) by φi(t + 1) =
∑

j∈N σijφ
d
j (t) for all i ∈ N which can be written in the

following concise form for the whole society:

Φ(t+ 1) = ΣΦd(t). (2)

We assume that all individuals carry over the trait that has been formed in their child
period into their adult period. In the adult period then, this adopted trait φi(t) guides
socio–economic choices. Formally, an adult has to choose a displayed trait φd

i (t) ∈ I.
We assume that this choice is evaluated with respect to two utility components: own
utility and inter–generational utility, reflecting the fact that parents care about their
own socio–economic choices as well as their children’s adopted cultural traits. Let
ui : I 7→ R represent an adult’s own utility from the displayed trait φd

i (t) and let
vi : I 7→ R represent the utility of an adult derived from its child’s adopted trait
φi(t + 1), i.e. the inter–generational utility component. The following specifies the
assumptions on each adult’s utility.

Assumption (Parental Utility Function). The utility for an adult i ∈ N , at time t ∈ N

is given by
ui

(

φd
i (t) |φi(t)

)

+ vi (φi(t+ 1) |φi(t)) (3)

with

1. ui (· |φi(t)) being single–peaked with peak φi(t), i.e. strictly increasing / decreasing
∀φd

i (t) ∈ I such that φd
i (t) < / > φi(t),
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2. vi (· |φi(t)) being single–peaked with peak φi(t), i.e. strictly increasing / decreasing
at all φi(t+ 1) ∈ I such that φi(t+ 1) < / > φi(t),

3. ui (· |φi(t)) and vi (· |φi(t)) being continuous, twice continuously differentiable, and
strictly concave.

In part A1 we assume that own utility ui is decreasing in the difference of the
displayed cultural trait from the actual or true cultural trait. This reflects the idea
that it comes with utility loss when an adult’s socio-economic actions are not in line
with the own (true) trait. Moreover, these dis-utilities are strictly increasing in the
‘extent of the deviation’.

Part A2 postulates that inter–generational utility vi is decreasing in the difference
between the parent’s trait and the trait that its child forms. There are two basic mo-
tivations to consider this case. The first one is that parents simply have an intrinsic
desire that their children develop a “personality” (trait) that is as similar as possible
to their own personality. The second motivation is based on a special form of parental
altruism, called imperfect empathy (Bisin and Verdier, 1998). Parents care about the
well-being of their children, but can only evaluate their child’s utility under their own
(not the child’s) utility function – which attains its maximum at the trait of the par-
ent.11 Part A3 and the additive separability of the two utility components are technical
assumptions which significantly reduce analytical complexity.

Remark 2. In Bisin and Verdier (2001) parents have a general set of costly controls to
influence the probability that the child learns their trait instead of learning the trait of
a random individual. This “parental socialization success share” is fixed and exogenous
in our baseline model and hence the socialization technology of parents is not targeted at
the influence weight σii.

12 Rather, parents can directly influence their children’s trait by
choice of their displayed trait (e.g. behavior or socio–economic actions) in Equation 1.
While the interpretations are different, there is a natural analogy between both models:
the costly choice of displayed traits in our model could well be one of the costly con-
trols in Bisin and Verdier (2001); deviation of displayed traits in the right direction (cf.
Proposition 1) influences the child’s adopted continuous trait, while increasing invest-
ments into the costly controls in Bisin and Verdier (2001) influence the probabilistic
analog, i.e. the probability to adopt the parents’ (discrete) trait. However, in our model
there is a direct externality which is not present in Bisin and Verdier (2001): by choos-
ing a displayed trait not only the own offspring is influenced, but also other connected
dynasties.

11There is a form of myopia in this line of interpretation: parents do not anticipate that their children
might also behaviorally deviate from their trait. Another interpretation of our model is that not only
adults but also children make socio-economic choices, while parents only consider the childhood choices
of their children. Young individuals (without own children) simply make socio-economic choices to
maximize only the own utility part u. These choices are evaluated by their parent’s inter-generational
utility which is the equivalent as evaluating the associated trait. When children become adults and
have their own children, the inter-generational utility component appears and to maximize their utility
they will adjust their behavior since they care about their children. However, since their parents do
not witness these adulthood choices anymore, this aspect does not enter their utility.

12In Section 5.1 we discuss an extension of our model, where the extend of influence σii is determined
as a choice variable of parents.
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2.2 The Adults’ Decisions

Summarizing the model developed in the previous section, the optimization problem of
each adult i ∈ N becomes

max
φd
i (t)∈I

ui

(

φd
i (t) |φi(t)

)

+ vi (φi(t+ 1) |φi(t)) (4)

s.t. φi(t+ 1) = σiiφ
d
i (t) + (1− σii)φ

d
Ni
(t),

in any period t ∈ N. The optimization problem (4) embodies the trade-off between own
utility losses, resulting from choices of displayed traits that do not coincide with the
true trait, and eventual improvements in the location of the child’s adopted trait.

Solutions to the optimization problem are displayed traits, which are best replies
to the representative environment’s displayed trait φd

Ni
(t) subject to the own trait

φi(t). Proposition 1 provides a characterization of the best replies, which we denote by
φd∗

i

(

φi(t), φ
d
Ni
(t)

)

, and later abbreviate as φd∗

i (t). Further let ∂I be the boundary and

I̊ the interior of interval I.

Proposition 1 (Characterization of Best Replies). For any adult i ∈ N , any trait
φi(t) and any representative trait φd

Ni
(t), there is a unique best reply displayed trait

φd∗

i

(

φi(t), φ
d
Ni
(t)

)

which satisfies the following properties:

(a) φd∗

i

(

φi(t), φ
d
Ni
(t)

)

= φi(t), if one of the following conditions is satisfied: σii ∈ {0, 1},
φd
Ni
(t) = φi(t), or φi(t) ∈ ∂I.

(b) Let σii ∈ (0, 1). Then φd∗

i

(

φi(t), φ
d
Ni
(t)

)

< φi(t) if and only if φd
Ni
(t) > φi(t) and

φi(t) ∈ I̊. (Analogously for φd
Ni
(t) < φi(t)).

(c) Let σii ∈ (0, 1) and consider two representative traits φd
Ni
(t), φ̃d

Ni
(t) such that one

of the best replies φd∗

i

(

φi(t), φ
d
Ni
(t)

)

or φd∗

i

(

φi(t), φ̃
d
Ni
(t)

)

is interior. Then

φd∗

i

(

φi(t), φ̃
d
Ni
(t)

)

> φd∗

i

(

φi(t), φ
d
Ni
(t)

)

if and only if φ̃d
Ni
(t) < φd

Ni
(t).

Proposition 1 qualitatively characterizes best reply displayed traits φd∗

i (t) in terms
of their deviation from the adopted cultural trait φi(t), as well as the dependence of the
former on the location of the representative displayed trait in the social environment
φd
Ni
(t). Part (a) is immediate. In the polar cases where either a parent has no influence

on its child, i.e. σii = 0, or where the environment has no influence on the child, i.e.
σii = 1, a parent will not deviate from its true trait, i.e. φd∗

i (t) = φi(t). Similarly, there
is no incentive to deviate from the own trait, which is the target trait for the child,
when the representative social environment φd

Ni
(t) coincides with it. In these cases we

thus have φd∗

i (t) = φi(t). The third case of (a) occurs when φi(t) is at the boundary
of the interval. Then any deviation of i would reduce both own and inter-generational
utility, hence the individuals will also choose φd∗

i (t) = φi(t).
Proposition 1 part (b) shows that in the other, more generic cases, parents coun-

tervail the respective socialization influence on their children by choosing a displayed
trait that deviates from their true trait. This deviation is always into the opposite
direction as the deviation of the representative displayed trait from the target trait.
As an example, consider parents who attach higher importance to religion than their
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local environment does. In order to avoid that their children’s value of religion is being
diluted, they will behave even more religiously, e.g. go more often to church, than they
would without having children. The opposite effect would obtain for secular parents in
a traditional environment.

Part (c) of Proposition 1 implies that for two displayed traits in the social environ-

ment φ̃d
Ni
(t) < φd

Ni
(t) < φi(t), we have φd∗

i (t)
(

φi(t), φ̃
d
Ni
(t)

)

> φd∗

i (t)
(

φi(t), φ
d
Ni
(t)

)

. In

other words, a parent’s deviation, i.e. the distance of displayed trait from true trait, is
increasing in the distance between its trait and the representative environment’s trait.
To give an interpretation, we note that the distance of the chosen displayed trait from
the true trait measures socialization investments since it corresponds to the own disu-
tility a parent accepts in order to generate inter–generational utility. Thus, part (c) of
Proposition 1 establishes a property of cultural substitution between direct and oblique
socialization, showing that socialization investments are higher, the more distant (in
terms of weighted average) the displayed trait in the local environment is.13

φd
Ni
(t)•

φi(t)•

φd∗
i (t)•

φ̃d
Ni
(t)

•

•

φ̃d∗
i (t)•

φi(t)

Figure 1: Characterization of Best Replies

Part (b) and part (c) of Proposition 1 are illustrated in Figure 1, where two best
reply choices are depicted. Part (b) concerns the direction of the deviation of displayed
trait φd∗

i (t), respectively φ̃d∗

i (t), from true trait φi(t). Part (c) concerns the degree of
deviation, which is larger in response to φ̃d

Ni
(t) (on the right) than in response to φd

Ni
(t)

(on the left).
We have characterized a parent’s best reply to the representative displayed trait of

its social environment. To study the dynamics of cultural transmission of continuous
traits, we will assume that every adult plays a best reply to the displayed trait choices
of its neighbors. Hence, we assume that a Nash equilibrium is played in every period.
Our previous assumptions guarantee existence of Nash equilibrium which is shown using
standard techniques.

13This corresponds to the Bisin and Verdier (2001) condition of cultural substitution in a setting of
dichotomous traits. That condition states that a parent’s investment into costly controls is higher the
larger the share of adults in the population which have a different cultural trait. Here, we can measure
the distance between own (true) trait and the weighted average displayed traits of neighbors and find
that investments into behavioral deviations are higher the larger this distance.
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Proposition 2 (Nash Equilibrium Existence). For every t ∈ N, a Nash equilibrium in
displayed trait choices exists. Denote this Φd∗(t) :=

(

φd∗

1 (t), . . . , φd∗

n (t)
)′
.

Proof. In Appendix B.2.

3 Two Dynasties

To point out how the dynamics of cultural traits unfold and how the dynasties interact,
we first discuss the case when there are only two such dynasties, N = {1, 2}. Con-
sider the optimization problem given by (4) such that Assumptions A1–A3 hold. Even
with this rather general functional form, the main intuition of the dynamics and the
differences to the discrete traits case of Bisin and Verdier (2001) can be observed.

Let φ1(t) < φ2(t) at some point in time t ∈ N. If the degree of risk aversion is the
considered trait, then this has the interpretation that the parent in family 1 is less risk
averse than the parent in family 2. By (1) the children’s adopted traits φ1(t + 1) and
φ2(t + 1) depend on parents’ best replies of displayed traits in equilibrium such that
φ1(t + 1) = σ11φ

d∗

1 (t) + (1 − σ11)φ
d∗

2 (t) and φ2(t + 1) = (1 − σ22)φ
d∗

1 (t) + σ22φ
d∗

2 (t).
From Proposition 1 we have that the displayed traits given by the best replies are more
“extreme” than the true traits, i.e. φd∗

1 (t) ≤ φ1(t) < φ2(t) ≤ φd∗

2 (t) since the parents of
generation t are investing to countervail the other family’s influence on their own child.
In the context of risk, this would mean that the parent in family 1 observes that its
child is also influenced by family 2 who behaves more risk averse. Hence, the parent in
family 1 would take socio-economic actions which display a low degree of risk aversion
(by taking gambles, etc.) since the parent wants the child to take chances in life and
not to be hesitant. In similar way, the parent of family 2 would choose even less risky
actions to countervail family 1’s influence.

These observations, which are based on equation (1) and Proposition 1, immediately
yield the condition for child 2 to have a stronger trait intensity than child 1 such as it
is the case for their parents:

φ1(t+ 1) ≤ (<)φ2(t+ 1) ⇔ 1 ≤ (<)σ11 + σ22. (5)

Thus, the relative positions of the adopted traits of the two dynasties will stay the
same if and only if σ11 + σ22 ≥ 1. This condition is always satisfied if children are more
influenced by their own parents than by the other dynasty, i.e. σii ≥

1
2
for i = 1, 2.

In an extreme example, both children are only influenced by their own parents, i.e.
σii = 1 for i = 1, 2; then dynamics are trivial since each child becomes a copy of its
parent whose displayed trait equals the true trait. Otherwise, it always holds that
φ1(t + 1) ∈ (φ1(t), φ

d∗

2 (t)) and φ2(t + 1) ∈ (φd∗

1 (t), φ2(t)), yielding dynamics such that
the traits of the two families converge towards each other if σ11 + σ22 > 1. In that case
we speak of smooth convergence since relative positions are maintained throughout the
process. In the context of risk aversion this means that family 1 is less risk averse
than family 2 at any point in time if children are more influenced by their own parents
than by the other family. However, at each time step the families become more and
more similar. Examples of smooth convergence are depicted in Figure 2a and 2b where
the dynamics of true and displayed traits are shown. Hence in this two–player case

11



we observe assimilation and convergence to a homogeneous society although relative
positions (e.g. lower degree of risk aversion of family 1) are persistent.

If instead σ11 + σ22 = 1 then by (5) both families’ cultural traits coincide in t + 1
and hence by Proposition 1 will coincide in all following periods. Thus, after one period
the dynamics of cultural traits converge, which we call one-step convergence. This is
presented in Figure 2c. Essentially, this means that the children of both families take
the same weighted average over both families’ displayed trait.

Finally, if σ11 + σ22 < 1 then by (5), relative positions of traits switch in each
period t ∈ N, i.e. sign(φ2(t+1)−φ1(t+1)) = −sign(φ2(t)−φ1(t)) yielding alternating
dynamics. These dynamics may still converge, as long as σ11 + σ22 is large enough, but
they may also diverge. Figures 2d–2f display these dynamics for decreasing values of
σ11 + σ22. While the dynamics of Figures 2d and 2e converge, divergence is obtained
in Figure 2f. Taking again risk aversion as an example, this means that the children
(or: at least one of them) are more influenced by the other family than by the own
family. Since both families exercise more extreme risk attitudes, this fact may actually
lead to divergence. In our framework it may be counterintuitive to observe dynamics of
cultural traits where relative positions switch each generation. However, these dynamics
are induced by the hypothetical assumption that parental socialization weights are very
low. In the two–dynasty case low parental socialization weights means that at least one
child is more influenced by parents of the other family than by the own parents. Dohmen
et al. (2012), however, present evidence that a child’s cultural trait is more influenced
by own parents than the social environment. Thus, the counterintuitive dynamics are
induced by rather unrealistic assumptions.
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(a) σ11 = .8 and σ22 = .6
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(f) σ11 = .1 and σ22 = .3

Figure 2: Dynamics of traits φ1(t) (solid black) and φ2(t) (solid red) and of displayed
traits φd∗

1 (t) (dashed black) and φd∗

2 (t) (dashed red) for different values of parental
socialization weight σ11 and σ22.

To summarize, note that in the two–dynasty case for σ11 + σ22 ≥ 1, we always
obtain convergence to a melting pot society, i.e. to a homogeneous cultural trait (if
σ11 + σ22 < 2). Convergence to one cultural trait seems to be a common feature when
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modeling continuous traits, see also Vaughan (2010) and Panebianco (2014). Instead,
in the models of discrete traits, children adopt either one of two traits even though
there may be influences from the other trait. Thus, discrete models of transmission of
cultural traits are more prone to result in persistence of heterogeneous traits. Although
this empirical feature is harder to obtain when modeling cultural traits by a continuous
variable, this modeling approach allows us for predictions about which cultural traits
will emerge; e.g. with the conditions above (large parental influence, σ11 + σ22 ≥ 1)
it can be already observed that relative positions are persistent and that the society
will converge to a convex combination of initial cultural traits. There is, however,
an alternative explanation for the persistence of cultural traits: relative positions are
persistent and convergence may be very slow.14

4 Dynamics of Cultural Traits

We now turn to the n–dynasty case, where we first characterize steady states, then
derive conditions for the convergence of traits, and finally discuss persistence.

4.1 The Social Network and Steady States

When allowing for more than two families, it is not only the parental socialization
weights that matter, but the distinct relationships σij between all dynasties i, j ∈ N
play a role.15 Thus, the structure of interaction, or expressed differently, the whole
network Σ is needed to identify convergence conditions of cultural traits and determine
which groups form homogeneous traits.

It will be helpful to introduce some network specific notation. We say that there
exists a connection from i to j in Σ, denoted by i → j, if there exists a k ∈ {1, ..., n}
such that (Σij)

k > 0. Two dynasties communicate, denoted by i ∼ j, if i → j and
j → i. A dynasty i is self-communicating if i → i which is implied by σii > 0. We will
assume throughout this section that every child is at least to some extent influenced by
its parent, i.e. σii > 0 for all i ∈ N. Trivially, ∼ defines an equivalence relation on the
set N which can, hence, be partitioned into equivalence classes P(Σ) = {L1, ..., Lp},
called self-communicating classes such that we have i ∼ j if and only if there exists a
L ∈ P(Σ) such that i, j ∈ L. A communication class L ∈ P(Σ) is called essential if
for all i ∈ L there does not exist a j /∈ L such that i → j. A communication class is
called inessential if it is not essential.16 We will also refer to members of inessential
communication classes as rest of the world.

Before presenting analytical results, we consider the following example to illustrate
main differences to the two–dynasty case and to clarify the network specific notions
introduced above.

14This explanation is also evident since there seems to be a discontinuity when σ11 = σ22 = 1 where
persistent heterogeneous traits emerge. To see that this is not really a discontinuity, we may decrease
one σii slightly by ǫ which yields convergence to homogeneous traits, but this convergence becomes
“infinitely” slow if ǫ → 0.

15The two–dynasty case can also be considered as a social network where all distinct relationships
matter. This network, however, is fully determined by the diagonal entries of the corresponding matrix,
i.e. the parents’ socialization weights, since σij = 1− σii, i 6= j.

16In network theory essential communication classes are called strongly connected and closed groups.
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Example 1. Suppose there are seven dynasties N = {1, 2, 3, 4, 5, 6, 7} such that the
relative influences σij are given by the weighted network Σ defined and presented in
Figure 3. In the depicted graph, a directed arc from i to j means that i is directly
influenced by j, i.e. σij > 0.

Σ =





















0.8 0.2 0 0 0 0 0
0.3 0.7 0 0 0 0 0
0 0 1 0 0 0 0
0.3 0 0 0.7 0 0 0
0 0.1 0 0.2 0.4 0 0.3
0 0 0 0.1 0.1 0.5 0.3
0 0 0.3 0 0.2 0.1 0.4





















1

2

3

4

5

6

7

Figure 3: The network Σ in matrix notation and the associated graph.

The dynasties 1 and 2 are only influenced by one another, family 3 is somewhat
isolated since there is no influence from other families. Family 4 is only influenced by
family 1 and itself. There is a connection between all other dynasties 5, 6, and 7 and
some of them are also influenced by the families 1, 2, and 3. Thus, the set of dynasties in
this example can be partitioned into four communication classes P(Σ) = {L1, L2, L3, L4}
such that L1 = {1, 2}, L2 = {3}, L3 = {4}, and L4 = {5, 6, 7}. L1 and L2 are essential
since they are not influenced by any other dynasty. The remaining communication
classes are inessential, which we also call the rest of the world.

An example for the dynamics in this society is presented in Figure 4, where initial
trait intensities are Φ(0) = (110, 90, 0, 130, 20, 120, 0)′. The dynamics of cultural traits
within essential communication classes, in this case L1 = {1, 2} and L2 = {3}, are
independent of the dynamics of other cultural traits since those families are not influ-
enced by any other family. In particular, smooth convergence of the cultural traits in
L1 = {1, 2} can be observed since σ11+σ22 > 1 (cf. Section 3). Since dynasty 3 forms a
singleton essential communication class, it will keep its cultural trait φ3(t) = 0 forever
(cf. Proposition 1). Although this dynasty is isolated in some sense, it is influential for
other dynasties. Within the rest of the world, i.e. L3 and L4, convergence to heteroge-
neous traits can be observed. Note that in the long run, the cultural traits of dynasties
in the rest of the world, L3 and L4, are in the convex hull of the long-run cultural traits
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Figure 4: Dynamics of cultural traits φ1(t) (black), φ2(t) (black), φ3(t) (red), φ4(t)
(blue), φ5(t) (green), φ6(t) (yellow) and φ7(t) (purple).

of the essential communication classes, L1 and L2, although in period 0 this is not the
case. Since dynasty 4 forms the singleton inessential communication class L3 which
is only influenced by family 1, its cultural trait converges to the trait of the essential
communication class L1 = {1, 2}. All other families’ cultural traits converge to traits
which are a true and heterogeneous “mixture” of the long-run traits in the essential
communication classes L1 and L2.

Several differences to the two-dynasty case can hence be observed in Example 1: (a)
the interaction structure induces a partition of the society into certain communication
classes and (b) heterogeneous traits may coexist in the long run across these groups
and within the rest of the world although within essential communication classes con-
vergence to homogeneous traits is obtained.17 These observations can be generalized to
any steady state of the dynamics.

Proposition 3 (Steady States). Define a steady state as a profile of traits Φ(t) ∈ In

such that Φ(t+ 1) = Φ(t). Then the following holds in any steady state Φ(t):

(a) Φ(t) = Φd∗(t), i.e. parents choose displayed traits equal to their traits.

(b) The cultural traits of the dynasties in an essential communication class L ∈ P(Σ)
coincide, i.e. φi(t) = φj(t) ∀i, j ∈ L.

(c) The cultural traits of the dynasties in an inessential communication class L′ ∈
P(Σ) are convex combinations of the cultural traits of the communication classes
L ∈ P(Σ) such that L′ → L.

17These features are well–known in the standard DeGroot model. The notable observation here is
the extension of the result to our more general model and its interpretation for cultural traits.
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Proof. In Appendix B.3.

To see that part (a) must hold, note that per definition, in any steady state, the
children adopt the same cultural traits as their parents have. By (1) this implies that
each parent’s displayed trait must coincide with the environment’s displayed trait (for
σii ∈ (0, 1)) or that parents have either full or no influence on their child (σii ∈ {0, 1}).
In each of these cases, parents behave as they are (see Proposition 1, part (a)). Hence,
if two families are connected, they must share the same cultural trait in a steady state,
which implies (b). Thus, (c) also holds since the inessential communication classes are
influenced by the essential communication classes but not vice versa.

4.2 Convergence

Given this steady state description, it now remains to derive conditions under which
the sequence of cultural traits actually converges to such a rest point. Even though in
Example 1 the cultural traits converge, this is not always the case as shown in Section 3.
To determine conditions for long-run convergence and to disentangle the effects of the
social network and the effects of increasing importance of the inter-generational utility
component, we will assume that both ui and vi are quadratic loss functions. We show
in Appendix C that similar convergence conditions are required when utility is more
general such that only Assumptions A1–A3 hold. Thus, let the own utility component
be given by

ui

(

φd
i (t)|φi(t)

)

:= −αi

(

φd
i (t)− φi(t)

)2
(6)

and the inter–generational utility component be given by

vi (φi(t+ 1) |φi(t)) = −βi (φi(t+ 1)− φi(t))
2 (7)

with αi, βi > 0 for all i ∈ N . These functional forms obviously satisfy Assumptions A1–
A3. The parameter αi captures the costs of deviating from true trait. The parameter βi

measures the strength of socialization incentives, i.e. the degree of imperfect empathy
(because the larger βi, the more an adult i ∈ N wants to raise its child according
to its values). These parameters are implicitly captured in the more general form of
the objective function in (3). Without loss of generality, we normalize αi ≡ 1 such
that βi represents the importance of inter-generational utility relative to own utility.
For simplicity, we additionally assume that the space of the possible trait intensities is
unbounded, i.e. I = R.

Then, the parents i ∈ N face the unrestricted optimization problems in every period
t ∈ N,

min
φd
i (t)∈R

(

φd
i (t)− φi(t)

)2
+ βi (φi(t+ 1)− φi(t))

2 (8)

such that φi(t + 1) is given by (2). With quadratic utilities, the displayed traits given
by parents’ best replies φd∗

i (t) are linear and can be calculated in the unique Nash
equilibrium to be Φd∗(t) = (I + BΣ)−1 (I + B)Φ(t) where I is the n × n identity
matrix and B is the diagonal matrix with entry βiσii in its i-th row.18 Since by (2)

18Solving the first order conditions implies 0 = ∂ui

∂φd

i

+ ∂vi

∂φd

i

= (φd∗

i (t)−φi(t))−σiiβi(φi(t)−φ∗
i (t+1)) for

all i ∈ N . Since in equilibrium all parents choose best replies, we have (I+B)Φ(t) = BΦ(t+1)+Φd∗

(t).
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we have Φ(t + 1) = ΣΦd∗(t), the law of motion of the dynamics is also linear with
Φ(t+ 1) = MΦ(t) where the matrix M is given by,

M := Σ (I + BΣ)−1 (I + B), (9)

and finally
Φ(t) = M tΦ(0).

Thus, in the quadratic utility case, the dynamics can be fully explained by the
sequence M t. Since conditions for convergence of such a dynamic process are well
known, we can trace those back to the exogenous determinants of the matrix M . These
are the social network Σ and the socialization incentives βi. Thus, by focusing on the
quadratic utility case, we are in a position to study the effects of these two parameters
on the dynamics of cultural trait intensities.

In the two–dynasty case we observed that the influence weight of own parents, i.e.
the diagonal of the matrix Σ, needs to be large enough in order to ensure convergence
to a steady state. This fact generalizes to the n-dynasty case as Proposition 4 shows.

Proposition 4 (Convergence I). Let the parental optimization problems given by (8).
Then, the following holds.

(a) If Σ is symmetric positive definite, then for every β ∈ R
n
+, limt→∞M tΦ(0) exists

and is a steady state (for Φ(0) arbitrary).

(b) If for some eigenvalue λ of a non-singular Σ we have Re(λ) < |λ|2,19 then there
is a β ∈ R

n
+ such that the spectral radius of M is strictly larger than 1. Thus, for

generic Φ(0) the sequence {Φ∗(t) = M tΦ(0)}t→∞ does not converge.

Proof. In Appendix B.4.

Proposition 4 (a) shows that symmetric positive definiteness of the social network is
sufficient for convergence. As the proof reveals, this condition guarantees that all
eigenvalues of M are real and located in the interval (0, 1], which implies a kind of
smooth convergence (cf. Section 3). In particular, the interval formed by the convex
hull of trait intensities of the current period is contained in that of the former period
which drives the convergence result of Proposition 4. Therefore, all long term traits
are contained in the convex hull of the initial traits Φ(0). For a symmetric matrix Σ,
a sufficient condition for positive definiteness is that it is strictly diagonally dominant,
i.e. ∀i ∈ N : σii >

1
2
. Hence, we get a direct generalization of the two–dynasty result:

if parents’s influence on their children is larger than the environment’s (together with
symmetric interaction weights), then the dynamics converges to a steady state. In other
words, the dynamics of cultural traits converge as long as the parental socialization
weights σii are large enough. Instances of non-convergence, as seen in Section 3, always

That I + BΣ is invertible can be ensured by assuming e.g. that Σ is symmetric positive definite. To
see this note that I+BΣ and I+B

1

2ΣB
1

2 have the same eigenvalues. Now if Σ is symmetric, B
1

2ΣB
1

2

is also symmetric and if Σ is positive semidefinite and B ≥ 0, B
1

2ΣB
1

2 is positive semidefinite. Thus,
BΣ has non-negative and real eigenvalues which implies that all eigenvalues of I + BΣ are non-zero,
thus I +BΣ is invertible. Substituting Φ(t+ 1) = ΣΦd∗

(t) implies the result.
19Re(λ) means the real part of eigenvalue λ.
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go along with alternating dynamics, a fact that requires (when socialization weights are
symmetric) low influence of own parents, an unrealistic assumption.

The idea that high parental influence and symmetric interaction weights ensure
convergence can also be generalized to more generic functional forms of utility such
that our Assumptions A1–A3 hold. However, one additional condition on the social
network is required: no individual dynasty should have excessive influence on others
(see Appendix C, Definition 1(iii)). This robustness result is presented in Appendix C.

Part (b) of Proposition 4 addresses matrices that are not symmetric positive def-
inite and states the following necessary condition for convergence (subject to any β):
Re(λ) ≥ |λ|2 for any eigenvalue λ of the matrix Σ, i.e. the real part of each eigenvalue
is larger than the squared absolute value of this eigenvalue. To see how both conditions
(necessary and sufficient) relate, let Σ be symmetric. Then, the property Re(λ) ≥ |λ|2

simplifies to λ ≥ λ2 and thus to λ ∈ [0, 1] since symmetric matrices only have real
eigenvalues. Thus, for symmetric and non-singular social networks Σ both conditions
coincide. Therefore, we get the following corollary for symmetric and non-singular
interaction structures Σ: Cultural traits converge if and only if Σ is positive definite.

In the proof of the necessity part of Proposition 4 it is used that large degrees of
imperfect empathy βi will lead to divergence if the eigenvalue condition is not satis-
fied. Hence, if the inter-generational utility part receives high weight βi in the utility
function, then this is detrimental for convergence. As has been mentioned above, the
present special case of quadratic utilities is basically a transformation of the DeGroot
model. Given that convergence is satisfied in the latter for all aperiodic Σ, it is intu-
itive that we also obtain convergence if the transformation to M (as induced by the
parental socialization incentives, which are embodied in the βi’s) is small enough. This
is confirmed as follows.

Proposition 5 (Convergence II). Let the parental optimization problems be as in (8).
Then, for every irreducible Σ with strictly positive diagonal, there exists a nonempty
neighborhood N (0 |Σ) ⊂ R

n
+,

20 such that ∀β ∈ N (0 |Σ)∪0, cultural traits in the society
Φ(t) converge (for Φ(0) arbitrary).

Proof. In Appendix B.5.

In the proof of this Proposition, we show first that if Σ has a strictly positive diagonal,
then it has a simple Perron–Frobenius eigenvalue of 1 where the absolute value of all
other eigenvalues is located in the interval (0, 1). Now, the eigenvalues are continuous
in the underlying matrices. Thus, it must be possible to at least slightly perturb Σ such
that the resulting matrix M also has a unique eigenvalue 1 with the absolute value of
all other eigenvalues in the interval (0, 1). Hence, M t converges. Notably, this holds
even though M might have negative entries.

To summarize, convergence of cultural traits is implied either by small socialization
incentives βi or by special structures of the matrix Σ, which means here that social-
ization weights are symmetric σij = σji and parents’ socialization weights σii are large
enough. Conversely, it takes both a different network structure (implied by unrealistic
assumptions) and strong enough socialization incentives to obtain non–convergence.

20N (0 |Σ) means that the size of the neighborhood around β = 0 depends on Σ.
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4.3 Persistence of Cultural Traits

In our model, convergence to a steady state implies that dynasties in essential communi-
cation classes converge to the same trait. Hence, the empirically observed phenomenon
of persistence of cultural traits can be represented in our model in two ways.

The first has been indicated in Example 1. Suppose that most families belong
to the rest of the world. Then as shown in Example 1 those families end up with
heterogeneous traits in the long-run even if they belong to one communication class,
which is inessential. The following example illustrates how this argument applies to the
case of immigration.

Example 2 (Immigration). Consider a set of immigrants who have moved from some
country B to another country A. Within both countries there is interaction between
residents. Moreover, immigrants keep some ties to their origin country. As an example,
suppose the network structure Σ is such that P(Σ) = {L1, L2, L3, L4} where L1 and L2

are essential communication classes from country A and B, respectively. We interpret
these as the leading culture of each country. For instance, these communication classes
may consist of a group of dynasties who are only influenced by the cultural trait of their
respective home country. L3 and L4 are inessential communication classes of residents
in Country A such that the immigrants are represented by I ⊂ L4. In period t = 0
the immigrants arrive in Country A with a cultural trait close to their home country’s
leading cultural trait and find some interaction with natives from Country A in L4 and
other immigrants I ⊂ L4.

One instance of such a network is given in Example 1. In this example, let there
be one immigrant represented by dynasty 7. The immigrant’s home country B, which
is given by a single representative dynasty 3 in Example 1, has a leading cultural trait
intensity of 0. In Country A, the leading culture is represented by the two dynasties in
the essential communication class L1 with a cultural trait intensity close to 100. From
Example 1 it is straightforward to see that the immigrating dynasty 7 assimilates over
time, but differences in traits are persistent, even in the long run (cf. Figure 4). This
is due to the fact that in this example, influence by the immigrant’s origin, country
B, is still present. Aleksynska (2011) reports a similar phenomenon when immigrants
maintain contacts to the origin country. Moreover, as it can also be seen from Figure 4,
this fact also leads several natives to adopt a different cultural trait such that multiple
heterogeneous traits persist in the long run.

Thus, the first explanation for persistence of cultural traits in our model is based
on heterogeneous network connections. The second explanation for persistence of cul-
tural traits was indicated in the discussion of the two–dynasty case. Even if the society
converges to a homogeneous trait intensity, relative positions of cultural trait intensi-
ties are prevailing, although the difference vanishes over time. This process might be
sufficiently slow to conclude empirically that heterogeneous traits persist.21 Note that
in Bisin and Verdier (2001), the assumption of imperfect empathy ensures persistence
of heterogeneous cultural traits in the long run. In our model of continuous traits, the
assumption of imperfect empathy may have an effect for the speed of convergence.

21Such an interpretation of persistence is recently also adopted in empirical literature (see e.g.
Giavazzi et al., 2014). In fact, Giavazzi et al. (2014) present evidence that assimilation of immigrant
traits is observed, but speed of convergence depends on the trait under consideration.
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As a benchmark, consider the case where parents do not care about the cultural trait
of their children, i.e. where βi = 0 for every parent i ∈ N . Mathematically, the dynamics
in the benchmark case are governed by the power series of Σt, while the dynamics of
our model with quadratic utilities are governed by M t, since Φ(t + 1) = M tΦ(t) and
M = Σ if βi = 0 for any i ∈ N . Thus, the spectral properties of both matrices not
only determine convergence conditions but also determine the speed of convergence.
Since both matrices Σ and M have 1 as the largest eigenvalue (see Proposition 4),
convergence speed is governed by the second largest eigenvalue. Let the eigenvalues
of Σ and M be ordered according to size, i.e. |λ1(Σ)| > |λ2(Σ)| ≥ ... ≥ |λK(Σ)| and
|λ1(M)| > |λ2(M)| ≥ ... ≥ |λK(M)|, such that multiple eigenvalues may occur.22 Then
convergence of M t is slower than convergence of Σt if |λ2(M)| > |λ2(Σ)|, which indeed
holds, as is established by the following proposition.

Proposition 6 (Speed of Convergence). Let the parental optimization problems be as
in (8). If Σ is symmetric positive definite and βi > 0 for all i ∈ N , then the eigenvalues
of M (which are real and positive) satisfy: λk(M) > λk(Σ) for all 2 ≤ k ≤ K. Thus,
socialization incentives β reduce the speed at which traits Φ(t) converge for t → ∞.
Moreover, λk(M) → 1 for all k = 1, ..., K if βi → ∞ for all i ∈ N . That is, for large
socialization incentives β convergence of traits becomes arbitrarily slow.

Proof. In Appendix B.6.

To interpret Proposition 6, note that zero socialization incentives, i.e. βi = 0 for all
i ∈ N , imply that displayed traits always coincide with true traits. Thus, Proposition 6
first shows that parents’ behavioral deviations from true trait slow down convergence.
Second, if the socialization incentives βi grow for all i ∈ N , then the eigenvalues of
M approach 1. This means that all families invest more and more to keep their cul-
tural trait and the change of cultural traits from one generation to the next becomes
arbitrarily small. Thus, an arbitrarily low speed of convergence obtains.

To summarize, we find that high parents’ influence on own children σii facilitates
convergence since alternating dynamics are avoided, while higher values of socialization
incentives βi lead to higher behavioral overshooting and hence to slower convergence.
In case of convergence, families within essential communication classes reach the same
cultural trait in the long run, while heterogeneity is obtained across essential communi-
cation classes and within the rest of the world. In any case of convergence, the long–run
traits are contained in the interval of the initial cultural traits.

5 Discussion

5.1 Possible Extensions

Throughout the analysis we assumed that the social network does not change over time.
This assumption, which is also used in most models on opinion dynamics, is made for
analytical tractability and yields a benchmark case. While, trivially, our convergence

22Note that for irreducible matrices Σ and M there is always a unique largest eigenvalue. With our
assumptions in Proposition 6 we even show that all eigenvalues of both Σ and M are real and positive,
and thus all inequalities are strict and the eigenvalues equal their absolute values.
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results are robust to small vanishing perturbations on the interaction structure, it would
be interesting to study the dynamics of traits when the network structure itself is
endogenous. In this section, we want to discuss briefly how our model may be extended
in this direction.

First, suppose that parents do not only choose their displayed trait, but are also
able to control how much they influence their own children. Higher influence can be
achieved by e.g. spending more time with their children, thereby limiting interactions
with other members of the society (extreme cases could include home-schooling of
children). Increasing the influence on own children requires higher efforts and is, hence,
more costly. These ideas are in line with the literature on cultural traits (cf. e.g. Bisin
and Verdier, 2001) where the socialization efforts of parents directly translate into a
higher probability of learning the own trait. These socialization efforts do not imply a
direct externality on others as in the case of choosing behavior.

If the time devoted to children is the only variable of choice, then this leads to trivial
dynamics as noted in Remark 1 (cf. also Panebianco, 2014). Hence, as an extension of
our model we briefly outline a model where parents choose their behavior and their time
spent with children as socialization instruments while keeping the relative interaction
with others unchanged. In other words, when being influenced more by their parents
than before, the influence of other families in the society decreases proportionally.

Thus, as in the baseline model, let the network be exogenously given by Σ. In each
period t ∈ N parents i ∈ N may choose efforts xi(t) ≥ 0 to increase the influence on its

child from the given socialization endowments σii to
σii+xi(t)
1+xi(t)

.23 This modeling choice of

change in influence is concave in efforts xi(t) and approaches 1 for arbitrarily large ef-
forts. The influences of other families j 6= i decrease proportionally and are hence given
by

σij

1+xi(t)
. Then, analogously to our baseline model (see Equation 2), children would

learn from the displayed traits of others according to the adjusted learning weights such
that the adopted trait will result from:

φi(t+ 1) =
σii + xi(t)

1 + xi(t)
φd
i (t) +

∑

j 6=i

σij

1 + xi(t)
φd
j (t). (10)

Considering, as before, quadratic utility, and, moreover, quadratic cost of effort, this
yields the following optimization problem of parents:

min
(φd

i (t),xi(t))∈R×R+

(

φd
i (t)− φi(t)

)2
+ βi (φi(t+ 1)− φi(t))

2 + γi(xi(t))
2 (11)

such that φi(t + 1) is given by (10). As before, βi denotes the degree of imperfect
empathy, while γi denotes the cost of effort (both relative to the cost of behavioral
deviation which is normalized to 1).

Analogously to the analysis presented in this paper, the properties of Proposi-
tion 1 still hold in equilibrium, denoted by (Φd∗(t), x∗(t)). Additionally, we always
have x∗

i (t) > 0 if φi(t) 6= φd∗

Ni
and σii < 1 (similar to the reasoning in Proposi-

tion 1). Note here that with the adjusted weights, the representative displayed trait
φd∗

Ni
=

∑

j 6=i
σij

(1+x∗

i )

(

1−
σii+x∗

i
1+x∗

i

)φd∗

j =
∑

j 6=i
σij

1−σii
φd∗

j is still defined as before.

23As in the literature (see also Appendix A), it is also possible to assume that spending no effort
implies no influence of children, i.e. socialization endowments are given by σii = 0. Here we present a
slightly more general approach.

21



Now, let φi(t) 6= φd∗

Ni
. The FOCs imply

(φd∗

i (t)− φi(t))

(φi(t)− φd∗
Ni
(t))

=
βi(σii + x∗

i (t))(1− σii)

(1 + x∗
i (t))

2 + βi(σii + x∗
i (t))

2
. (12)

The right-hand side of (12) is decreasing in x∗
i (t) for all x

∗
i (t) ∈ R+ and all 1/2 ≤ σii.

This implies that, faced with the same φd∗

Ni
as in the baseline model, each family will

choose a less extreme behavioral deviation than before.
To sketch the resulting dynamics briefly, let us consider the case of two dynasties

with sufficiently large parental socialization endowments, σii ≥ 1/2. To compare these
dynamics to our baseline model, we denote the original choices and outcomes by a
hat, i.e. φ̂d∗

i (t) represents the best reply displayed trait of player i, when this is the
only variable of choice, i.e. xi(t) = 0. As in the two-dynasty case in Section 3, let
φ1(t) < φ2(t). By the reasoning above, we have again that the best replies in displayed
traits are such that φd∗

1 (t) < φ1(t) < φ2(t) < φd∗

2 (t). From (12) it is then immediate
that for σ11, σ22 ≥ 1/2, we get φ̂d∗

1 (t) < φd∗

1 (t) and φd∗

2 (t) < φ̂d∗

2 (t) which implies
φ1(t) < φ1(t + 1) < φ2(t + 1) < φ2(t). Thus relative positions are preserved, implying
smooth convergence. Further, we also have |φi(t + 1) − φi(t)| < |φ̂i(t + 1) − φi(t)|,
i.e. parents will achieve that their children’s traits are closer to their own than in the
original model. This holds since each dynasty is faced with a less extreme behavior of
the other dynasty than in the original model, coupled with the fact that dynasties have
a richer choice set.

To sum up, by introducing direct socialization efforts into our model, we still get
convergence when parents are the primary socialization source, but convergence obtains
at a lower speed. We conjecture that these observations also extend to the n-dynasty
case for the following reasons: first, convergence is reinforced since behavior is less
extreme and the diagonal is larger (recall that for all positive definite interaction struc-
tures we established convergence). Second, we expect convergence to be slower for the
exact same reason, i.e. parents invest more into socialization since they have an addi-
tional socialization instrument available. Thus, persistence of cultural traits in relative
positions and in terms of slow convergence is strengthened when parents can control
their influence on their children. Moreover, being the primary socialization source, may
be achieved not only by the requirement that the socialization endowment σii is large
enough, but also by low enough effort costs. Both these conditions ensure the parental
influence to be large enough in equilibrium which may result in less demanding con-
vergence conditions on the interaction structure. Technically, however, the dynamics
result in a time–inhomogeneous product of matrices which may contain also negative
entries. In Appendix C, we show how to handle such time-inhomogeneous law of mo-
tions. The assumptions on the interaction structure (requiring a symmetric ultrametric
structure) are, however, more demanding than necessary when applied to the setting
of endogenous efforts. Hence, we leave the details of this analysis to future research.

Another very interesting approach of introducing a time-varying interaction struc-
ture is to allow parents to control the whole network of their children. This could be
achieved by moving to a certain neighborhood, or choosing a particular school for their
children. Compared to determining the own influence, these network choices, however,
have also implications for the following generations’ networks, since it seems reasonable
to assume that the network is passed over to the next generation. Deviating from the
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inherited network should be costly depending e.g. on some distance measure. Under
these assumptions a co-evolution of network and traits can be studied which may as
well yield separation and persistence of heterogeneous traits in the long–run. While
analytically challenging, such a type of model deserves extensive investigation in future
research.

Moreover, we assumed throughout the present paper that the adopted trait has
no effect on an individual’s wealth. If such effects are considered, then additional
incentives arise which feed back to the trait formation process (see, e.g., Doepke and
Zilibotti, 2008). Hence, it would be ultimately desirable to understand the co-evolution
of cultural traits, individual wealth, and the social network.

5.2 Conclusion

In this paper, we introduce a model of cultural transmission of continuous traits within
a finite population. Interaction ties are captured by a social network structure. In
the related literature on cultural transmission of traits, usually a continuous player set
is assumed and interaction itself is global (see for a survey, Bisin and Verdier, 2010).
However, empirical evidence strongly suggests that the transmission of cultural traits
is local (e.g. Dohmen et al., 2012; Voigtländer and Voth, 2012). We show in this paper
that not only the socialization incentives, but also the interaction structure matters for
the question of whether a homogeneous society is observable in the long run.

In case of symmetric social networks, positive definiteness of the network is neces-
sary and sufficient for convergence of continuous cultural traits (Proposition 4). This
condition has a quite intuitive interpretation: if children are more influenced by their
parents than by the social environment, then the dynamics converge. We have shown
this when both utility components are quadratic, but similar conditions are required
for general utility (see Proposition C1 in Appendix C.1).

While a deterministic model on continuous cultural traits is more likely to result
in convergence to a melting pot society (cf. also Vaughan, 2010 and Panebianco, 2014)
than a probabilistic model on discrete traits (e.g. Bisin and Verdier, 2001), our exercise
yields two possible answers to the puzzle of the long–term persistence of heterogeneous
cultural traits. First, convergence to a steady state in our model does not imply homo-
geneity of traits in the whole society but only within closed subgroups of it (Proposi-
tion 3). In particular, across these groups, and more interestingly, outside these groups
(i.e. in the rest of the world), heterogeneous cultural traits generically coexist in the
long–run. As an example, we briefly outlined how such a model can be used to ex-
plain persistence of cultural traits after immigration (Example 2). Second, speed of
convergence depends on the interaction structure and, most importantly, it is reduced
by the parents’ socialization efforts (Proposition 6). Thus, for high socialization incen-
tives convergence may be very slow, thereby matching empirical results of persistence
of cultural traits. Indeed, Giavazzi et al. (2014) interpret persistence of cultural traits
as slow convergence and present empirical evidence that the speed of evolution depends
on the trait in question. In the light of our model, it is the degree of the socialization
incentives for the considered trait that drives the observed speed of convergence.

Interestingly, our model is also very close to that of opinion formation dynamics of
DeGroot (1974) and the succeeding literature (e.g. DeMarzo et al., 2003; Golub and
Jackson, 2010). The opinion dynamics have been studied so far only with respect to
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truth telling, omitting the possibility of exaggerating as strategic choice in discussion.
Interpreting our model in this way, we show that the introduction of strategic interac-
tion leads to cases of non-convergence, while the opinion dynamics in DeGroot (1974)
converge whenever the matrix that represents the network has a strictly positive diag-
onal. Hence, the conditions for convergence that we identify require more structure on
the underlying network.
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Appendix

A A more Standard Model

Here, we briefly study an alternative model, which is closer to the models in the liter-
ature (Bisin and Verdier, 2001; Vaughan, 2010; Panebianco, 2014), in particular, with
respect to the socialization instrument. For this purpose, we reconsider Equation (1)
and make two simplifying assumptions. First, suppose that for each parent displayed
trait equals true trait, i.e. φd

i (t) = φi(t) ∀i, t. Second, let the relevant social environment
of every child be the unweighted average of the society φN(t). Then Equation (1) reads
as follows:

φi(t+ 1) = σiiφi(t) + (1− σii)φN(t). (A.1)

We follow the literature by assuming that parents can invest into their socialization
weight σii, while there are socialization costs C(σii). As in Bisin and Verdier (2001),
Vaughan (2010), and Panebianco (2014) we consider the case of imperfect empathy and
quadratic disutilities. Then the parental optimization problem is: minσii∈[0,1][φi(t +
1) − φi(t)]

2 + cσ2
ii, where c > 0 is a cost parameter and φi(t + 1) is determined by

Equation (A.1).
The first order condition yields the following optimal socialization weight:

σ∗
ii =

(φi(t)− φN(t))
2

(φi(t)− φN(t))2 + c
= 1−

c

c+ (φi(t)− φN(t))2
. (A.2)

Observe that optimal parental weight is decreasing in the cost parameter c and in-
creasing in the difference between a parent’s trait and the societal average trait. Thus,
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the more distant a parent’s trait from the average trait, the higher its socialization
investment – an effect which is referred to as cultural substitution. However, we always
obtain σ∗

ii ∈ (0, 1), which implies that all dynasties converge to one single trait since
traits move towards the average trait. Thus, cultural substitution is not sufficient to
avoid homogeneity of traits in the long run. The model we study in this paper (Equa-
tion 1) yields different dynamics: It does not guarantee convergence to a steady state
(due to a different socialization instrument); and, under convergence, multiple cultural
traits can emerge (due to local interaction structures).

B Proofs

B.1 Proof of Proposition 1

Given φi(t), σii and φd
Ni
(t), let us define f : R 7→ R s.t. f(x) = vi

(

σiix+ (1− σii)φ
d
Ni
(t)

)

,
i.e. f evaluates the inter–generational utility at each displayed trait of a parent. Then,
a parent’s maximization problem (4) can be written as follows

max
x∈I

ui(x) + f(x). (B.1)

Note f ′′(x) = v′′(σiix+(1−σiiφ
d
Ni
(t))σ2

ii. By the assumptions that ui and vi are strictly
concave, we have u′′

i (x) + f ′′(x) < 0 for all x ∈ I. Since we maximize a continuous
and strictly concave function over a compact set, there is a unique solution, which we
denote by x∗.

Proof of part (a)

1. If σii = 0, then f(x) is constant for all x. Hence, x∗ = argmax ui(x) = φi(t).

2. If σii = 1, then f(x) = v(x) such that x∗ = φi(t) maximizes both ui(x) and f(x).

3. If φd
Ni
(t) = φi(t), then again x∗ = φi(t) maximizes both ui(x) and f(x) (since it

implies that φi(t+ 1) = φi(t)).

4. Let φi(t) = min I. Then φi(t+1) ≥ φi(t) for any x. Thus, f(x) is non-increasing
in x, while ui(x) is decreasing in x attaining its maximum at x∗ = φi(t). And
analogously, for φi(t) = max I.

Proof of part (b) We first assume that φd
Ni
(t) > φi(t) and φi(t) ∈ I̊ and show that

it implies φd∗

i

(

φi(t), φ
d
Ni
(t)

)

< φi(t). Using the definition of f as above, we note that
for σii ∈ (0, 1), f(x) is strictly decreasing for all x ≥ φi(t). ui(x) is non-increasing such
that x > φi(t) cannot be optimal. At x = φi(t) we have u

′
i(φi(t)) = 0 and f ′(φi(t)) < 0

such that x = φi(t) − ǫ is an improvement for small enough ǫ > 0. Moreover, for
small enough ǫ > 0, this choice is interior by the assumption that φi(t) is interior. And
analogously for φd

Ni
(t) < φi(t).

For the opposite direction, let us assume that x∗ < φi(t) and suppose that it does
not imply that φi(t) is interior and that φd

Ni
(t) > φi(t). If φi(t) is at the boundary,

part (a) of Proposition 1 implies that x∗ = φi(t), which contradicts the assumption. If
φd
Ni
(t) ≤ φi(t), then for x < φi(t) both f(x) and ui(x) are increasing such that x < φi(t)

cannot be optimal. A contradiction.
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Proof of part (c) Let σii ∈ (0, 1). We show that φ̃d
Ni
(t) < φd

Ni
(t) implies φd∗

i

(

φi(t), φ̃
d
Ni
(t)

)

>

φd∗

i

(

φi(t), φ
d
Ni
(t)

)

by distinguishing between three cases.

(i) Suppose φ̃d
Ni
(t) ≤ φi(t) ≤ φd

Ni
(t), where at least one of the two inequalities is

strict. Proposition 1 part (a) and part (b) imply that φd∗

i

(

φi(t), φ̃
d
Ni
(t)

)

≥ φi(t) ≥

φd∗

i

(

φi(t), φ
d
Ni
(t)

)

, where strictness of each inequality carries over.

(ii) Suppose φ̃d
Ni
(t) < φd

Ni
(t) ≤ φi(t) and let x∗ be the best response to φd

Ni
(t), i.e. the

solution to the maximization problemmaxx∈Iui(x)+f(x) as above. Now, consider

φ̃d
Ni
(t) instead of φd

Ni
(t) and define f̃ : R 7→ R s.t. f̃(x) = vi

(

σiix+ (1− σii)φ̃
d
Ni
(t)

)

.

Then the optimization problem (4) becomes (analogously to above),

max
x∈I

ui(x) + f̃(x). (B.2)

The optimal solution to (B.2) is denoted by x̃∗. Note that f and f̃ are strictly
concave for σii ∈ (0, 1). Since φ̃d

Ni
(t) < φd

Ni
(t) we have that f̃(x) is a right-shifted

version of f , i.e. f̃(x) = f(x − δ) for δ := 1−σii

σii
(φNi

(t) − φ̃Ni
(t)) > 0. Thus, it

holds that f̃ ′(x) > f ′(x) for any x (since f̃ ′ and f ′ are strictly decreasing).

For an interior solution x∗, which satisfies the first order condition f ′(x∗) =
−u′

i(x
∗), this implies f̃ ′(x∗) > −u′

i(x
∗). Hence, u′

i(x) + f̃ ′(x) > 0, i.e. the target
function ui(x) + f̃(x) is increasing at x∗, which yields x̃∗ > x∗ if x∗ is interior.
If x∗ is not interior, we have x∗ = max I (by Proposition 1 part (b)) and hence
u′
i(x

∗) + f ′(x∗) ≥ 0. Again, f̃ ′(x) > f ′(x) implies u′
i(x

∗) + f̃ ′(x∗) > 0, which leads
to a boundary solution x̃∗ = x∗ = max I. However, this case is excluded by the
assumption that one of the solutions must be interior. (This shows the claim in

case ii since x̃∗ = φd∗

i

(

φi(t), φ̃
d
Ni
(t)

)

> φd∗

i

(

φi(t), φ
d
Ni
(t)

)

= x∗ if x∗ is interior.)

(iii) Suppose that φi(t) ≤ φ̃d
Ni
(t) < φd

Ni
(t). The arguments that establish that

φd∗

i

(

φi(t), φ̃
d
Ni
(t)

)

> φd∗

i

(

φi(t), φ
d
Ni
(t)

)

are fully analogous to Case (ii) above.

The three cases show the first direction (“IF”) of Proposition 1 part (c). To establish
the other direction (“ONLY IF”) note first that φd

Ni
(t) < φ̃d

Ni
(t) implies that x̃∗ < x∗

by the three cases above when exchanging φ̃d
Ni
(t) and φd

Ni
(t). Moreover, φ̃d

Ni
(t) = φd

Ni
(t)

implies x̃∗ = x∗ because there is a unique solution to the two coinciding maximization
problems.

B.2 Proof of Proposition 2

From equation (2), it follows that ∀i ∈ N , φi(t+1) is linear in φd
i (t), thus vi (φi(t+ 1) |φi(t))

is concave in φd
i (t) (by A3). This implies that the target functions of the optimization

problems of all parents are concave (and continuous). Since also the displayed trait
choice set is compact and convex, a non–empty, upper hemicontinuous and convex
set of displayed trait best replies exists for any parent (Berge’s Theorem of the Max-
imum). Thus, a fixed point, i.e. a Nash equilibrium, exists (Kakutani’s Fixed Point
Theorem).
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B.3 Proof of Proposition 3

(a) That in any steady state, parents choose their adopted trait as displayed trait is
directly implied by Proposition 1.

(b) By the definition of steady states and the trait formation rule (2), it follows that the
set of steady states coincides with the set {Φ ∈ In |ΣΦ = Φ}. Hence, it is immediate
that if the traits of all members of an essential communication class are identical, then
ΣLΦL = ΦL, where ΣL is the restriction of Σ to some essential communication class L,
and ΦL is its vector of adopted traits restricted to that set. We proceed by showing
that steady state traits cannot differ within an essential communication class. To show
a contradiction, suppose that for an essential communication class L ∈ P(Σ), |L| ≥ 2,
there exists i, j ∈ L with φi 6= φj. Denote by φ̄L := max{φi|i ∈ L} the maximal trait
in communication class L. Since L is a communication class, it follows that there exists
an i ∈ {l ∈ L : φl = φ̄L} and a j ∈ {l ∈ L|φl 6= φ̄L} such that σij > 0. Moreover, due to
maximality of φ̄L and the fact that L is essential, σik = 0 for all k ∈ N with φk > φ̄L.
Thus, e′iΣΦL 6= φi implying that this cannot be a steady state (ei denotes the i-th unit
vector).

(c) Suppose that for some inessential communication class L′ ∈ P(Σ) with connections
to other dynasties J := {j ∈ N |i → j, i ∈ L′} the set of traits ΦL′ is not included
in conv(φj|j ∈ J). W.l.o.g. we have φ̄L′ := max{φi|i ∈ L′} > max{φj|j ∈ J}. Since
L′ is a communication class and is inessential with all outside connections being to
dynasties with traits strictly less than φ̄L′ , we get (similarly to (b)) for some player
k ∈ {i ∈ L′|φi = φ̄L′} that there exists j ∈ N and φj < φ̄L′ such that σkj > 0. Again,
due to maximality of φ̄L′ and all other connections being to dynasties with traits strictly
less than φ̄L′ , we get that e′kΣΦL′ 6= φk, implying that this cannot be a steady state.
Hence, all traits of the dynasties in inessential communication classes L′ ∈ P(Σ) are
convex combinations of the traits of the communication classes L ∈ P (Σ) such that
J ∩ L 6= ∅.

B.4 Proof of Proposition 4

To prove the proposition, we will apply the following Lemma (see e.g. Friedberg and
Insel, 1992).

Lemma B1 (Convergence). Let A be a square matrix with complex or real entries.
Then, the sequence {At}t→∞ converges if and only if the following two conditions are
satisfied.

(i) If λ is an eigenvalue of A, then either λ = 1 or λ lies in the open unit disc of the
complex plane, i.e. |λ| ∈ (−1, 1).

(ii) If 1 is an eigenvalue of A, then its algebraic multiplicity equals its geometric
multiplicity.

Let us denote by Λ(A) the set of eigenvalues of a matrix A and let λ(A) ∈ Λ(A).
Moreover, if z is a complex number, then we denote by Re(z) the real part and by
Im(z) the imaginary part of z.
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Proof of part (a) We show that condition (i) of Lemma B1 is satisfied for symmetric
positive definite matrices Σ. To see this, note first that by definition M = Σ(I +
BΣ)−1(I +B) = (B +Σ−1)−1(I +B),24 which implies that M is invertible and M−1 =
(I + B)−1(B + Σ−1). Let B̃ denote the diagonal matrix B̃ := (I + B)−1. Thus, for all
i = 1, ..., n the entries of B̃ given by b̃ii = 1

1+σiiβi
are such that b̃ii ∈ (0, 1). Then,

B̃B = I − B̃, and

M−1 = B̃(B + Σ−1) = I − B̃ + B̃Σ−1 = I + B̃(Σ−1 − I). (B.3)

First, note that since Σ is assumed to be symmetric positive definite, so is Σ−1 and
(Σ−1 − I) (see below) and the eigenvalues of these matrices are real and positive.

Second, the matrices B̃(Σ−1 − I) = B̃1/2[B̃1/2(Σ− I)] and B̃1/2(Σ−1 − I)B̃1/2 have

the same eigenvalues,25 where B̃1/2 is the diagonal matrix with entries
(

B̃1/2
)

ii
=

√

b̃ii. Moreover, it is easily checked that B̃1/2 (Σ−1 − I) B̃1/2 is positive definite and
symmetric, i.e. has only positive real eigenvalues. Thus, also the eigenvalues of M−1

(and hence those of M) are real and positive.
Now, since Σ is row stochastic, we have |λ(Σ)| ≤ 1, which implies that λ(Σ−1) ≥ 1.

Thus, λ(Σ−1 − I) ≥ 0 (subtraction of I decreases all eigenvalues by 1). By above, we
have λ(B̃(Σ−1 − I)) ≥ 0, which implies λ(I + B̃(Σ−1 − I)) ≥ 1, i.e. λ(M−1) ≥ 1, and
hence all eigenvalues of M are real and located in the interval (0, 1]. Furthermore, since
M has row sum one (see Lemma C2, using x = (1, 1, ..., 1)′), at least one eigenvalue must
be equal to 1. Note that, the number of 1-eigenvalues as well as the number of associated
linear independent eigenvectors equals the number of essential communication classes
of M . Hence condition (ii) of Lemma B1 is also satisfied. Thus, M t converges, i.e.
M∞ := limt→∞M t exists, and since 1 is an eigenvalue of M , M∞ 6= 0. Denoting
Φ(∞) := M∞Φ(0) it is easy to see that Φ(∞) is a steady state since MΦ(∞) =
MM∞Φ(0) = M∞Φ(0) = Φ(∞).

Proof of part (b) Assume that the condition in the statement is not satisfied, i.e. let
there be an eigenvalue λ̃(Σ) that satisfies Re(λ̃(Σ)) < |λ̃(Σ)|2. The latter is equivalent

to Re(λ̃−1(Σ)) < 1, simply because z−1 = Re(z)
Re2(z)+Im2(z)

+ −Im(z)
Re2(z)+Im2(z)

i and |z|2 =

Re2(z)+ Im2(z) for any complex number z ∈ C. By assumption, Σ is invertible and we
note that λ̃−1(Σ) is an eigenvalue of Σ−1. Now, let for each i, βi ≡

k
σii
, k ∈ R, so that

B = kI. We show that if k is large enough, then M has an eigenvalue with absolute
value larger than 1 and hence condition (i) of Lemma B1 is violated.

To do so, we will use M−1 = (I + B)−1(B + Σ−1) = (I + kI)−1(kI + Σ−1) =
((1 + k)I)−1(kI + Σ−1) = 1

1+k
(kI + Σ−1). Now, since Re(λ̃(Σ−1)) = Re(λ̃−1(Σ)) < 1,

we have Re(λ̃(kI + Σ−1)) < 1 + k, because λ̃(kI + Σ−1) = k + λ̃(Σ−1). For k large
enough, we must have |λ̃(kI + Σ−1)| < 1 + k.26 To see that this must hold, denote

24That this representation is well defined if Σ is positive definite has been discussed in footnote 18.
25This holds since for any two n × n matrices A,B the eigenvalues of AB are the same as the

eigenvalues of BA, although the eigenvectors may differ.
26If λ̃−1(Σ) is a real number, then this holds trivially.
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ǫ := 1−Re(λ̃(Σ−1)) and we get:

|λ̃(kI + Σ−1)|2 = Re2(λ̃(kI + Σ−1)) + Im2(λ̃(kI + Σ−1)

= (1− ǫ+ k)2 + Im2(λ̃(Σ−1))

= (k + 1)2 + Im2(λ̃(Σ−1)) + ǫ2 − 2ǫ− 2ǫk,

which is smaller than (1+k)2 for k > Im2(λ̃(Σ−1))+ǫ2−2ǫ
2ǫ

. Thus, we get for k large enough,

1

1 + k
|(λ̃(kI + Σ−1))| =

∣

∣

∣

∣

λ̃

(

1

1 + k
(kI + Σ−1)

)∣

∣

∣

∣

= |λ̃(M−1)| < 1

and hence |λ̃(M)| > 1 so that condition (i) of Lemma B1 is violated.

B.5 Proof of Proposition 5

As by Lemma B1 above, for the convergence of the powers of a matrix A it is sufficient
that 1 is exactly one eigenvalue of A and all other eigenvalues are in the interval (−1, 1).
To prove the proposition, we will in a first step apply the Perron-Frobenius Theorem
(henceforth: PFT) for a regular row–stochastic matrix A: (i) The spectral radius (the
largest eigenvalue in absolute value) of A is 1. (ii) For all other eigenvalues λ it holds
that |λ| < 1. (iii) The eigenvalue 1 is simple. Consider any row stochastic Σ such that
Σ is irreducible with strictly positive diagonal. This implies that Σ is regular, so that
by the PFT for regular row stochastic matrices, Σ has simple eigenvalue 1 and all other
eigenvalues are in (−1, 1).

Let us now consider the transformations M = Σ(I + BΣ)−1 (I + B). In a first
step, we have to guarantee that I + BΣ is invertible, so that M exists. Note that
strict diagonal dominance would be sufficient for non–singularity. For strict diagonal

dominance, we require that 1 + βi

(

σii −
∑

j∈Ni
σij

)

> 0 holds for every i ∈ N . Since

Σ has a strictly positive diagonal, this is always satisfied if e.g. β ≤ 1.
Given this, it follows again by the continuity of the eigenvalues that there exists a

non–empty neighborhood N (0 |Σ) ⊂ R
n
+ such that ∀β ∈ N (0 |Σ) ∪ 0 both I + BΣ

is strictly diagonally dominant and M has exactly one eigenvalue equal 1 and n − 1
eigenvalues in the interval (−1, 1). Thus, M t converges.

B.6 Proof of Proposition 6

For symmetric positive definite and row stochastic matrices Σ, convergence of Σt for
t → ∞ is trivially implied and convergence of M t for t → ∞ is already established
by Proposition 4. To show that convergence of M t is slower than convergence of Σt

for t → ∞, we show that all eigenvalues of M are real and λk(Σ) < λk(M) for all
2 ≤ k ≤ K.

By (B.3) we have that M−1 = I + B̃(Σ−1 − I) with B̃ being a diagonal matrix with
entries 0 < b̃ii =

1
1+σiiβi

< 1 for all βi > 0. As in the proof of Proposition 4 we have,

λk(M
−1) = 1 + λk(B̃(Σ−1 − I)) = 1 + λk(B

1/2(Σ−1 − I)B1/2).

Moreover, by the proof of Proposition 4, (Σ−1−I) and B̃1/2(Σ−1−I)B̃1/2 are symmetric
and positive definite.
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Since
(

B̃1/2
)∗

= B̃1/2 and B̃1/2 is non–singular,27 and (Σ−1−I) is symmetric, we get

by Theorem 1 in Ostrowski (1959) (see also Horn and Johnson, 2010) that λk(B̃
1/2(Σ−1−

I)B̃1/2) = θkλk(Σ
−1 − I), where θk are real numbers such that λK(B̃

1/2B̃1/2) ≤ θk ≤
λ1(B̃

1/2B̃1/2). Since B̃1/2B̃1/2 = B̃ is diagonal with entries 0 < b̃ii < 1, it holds that
λk(B̃

1/2(Σ−1 − I)B̃1/2) < λk(Σ
−1 − I) for all k such that λk(Σ

−1 − I) > 0. The latter
is satisfied for λk(Σ) < 1, and thus for all λk(Σ) such that 2 ≤ k ≤ K.

Hence, for 2 ≤ k ≤ K :

λk(M
−1) = 1 + λk

(

B̃(Σ−1 − I)
)

< 1 + λk

(

Σ−1 − I
)

= 1 + λk(Σ
−1)− 1 = λk(Σ

−1),

which implies that λk(M) > λk(Σ) for all 2 ≤ k ≤ K proving the statement and
implying that convergence of M t is slower than convergence of Σt for t → ∞.

To show the second part, consider the limit when all socialization incentives grow,
βi → ∞ for all i = 1, ..., n. Then, b̃ii =

1
1+σiiβi

→ 0, and, hence,M−1 = I+B̃(Σ−1−I) →

I. Thus, λk(M) → 1 for all eigenvalues λk of M , k = 1, ..., K.

C Convergence in the General Case

We show in this part of the appendix how convergence conditions for more general
utility functions can be obtained. In particular, the convergence conditions found for
quadratic utility (presented in Section 4.2) generalize nicely to utility functions that
satisfy Assumptions A1-A3. In this case, best reply displayed cultural traits Φd∗(t)
need not be linear in the true cultural traits Φ(t). Since we assume that in each period
a Nash equilibrium is played, the dynamics are non-linear, too. In particular, the law
of motion of the dynamics depends on the vector of cultural traits Φ(t). First, we show
how such dynamics can be represented by a linear system, which is analogous but more
general than the process Φ(t + 1) = MΦ(t) that we derived in the quadratic utility
case. Then we will derive a condition on the network structure Σ which is sufficient for
convergence and finally we prove this result.

C.1 Linearizing the Dynamical System

In this section we show how the dynamics of cultural traits can be presented by a linear
system, a product of time-dependent matrices M(t). For this purpose, we define a map
B∗ which picks one Nash equilibrium each period.

Corollary C1 (Nash Equilibrium Map). There exists a Nash equilibrium map B∗ :
In 7→ R

n
+, such that for every i ∈ N and for every t ∈ N, B∗ (Φ(t)) = (b∗1(t), . . . , b

∗
n(t))

′

satisfies
φd∗

i (t)− φi(t) = b∗i (t) · (φi(t)− φ∗
i (t+ 1))

where φ∗
i (t + 1) :=

∑

j∈N σijφ
d∗

j (t). This map has the property that b∗i (t) ≥ 0 for all
t ∈ N. Moreover, if for all i ∈ N , σii = 0, then b∗i (t) = 0, ∀t ∈ N.

27The asterisk denotes the complex conjugate transpose.
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Proof. Follows immediately from the best reply characterization of Proposition 1 and
the Nash equilibrium existence of Proposition 2.

The Nash equilibrium map simply represents the Nash equilibrium displayed trait
choices in terms of their deviations from the adults’ traits relative to the deviation of
the children’s adopted traits from the socialization targets. This representation can
equivalently be written as φd∗

i (t) + b∗i (t)ΣiΦ
d∗(t) = (1 + b∗i (t))φi(t), for every i ∈ N .

Defining B(t) := diag (b∗1(t), . . . , b
∗
n(t)), we thus obtain,

(I +B(t)Σ)Φd∗(t) = (I + B(t))Φ∗(t)

so that
Φd∗(t) = (I + B(t)Σ)−1 (I + B(t))Φ∗(t)

and hence
Φ∗(t+ 1) = Σ (I + B(t)Σ)−1 (I + B(t))Φ∗(t).

For this representation to be well–defined, it is sufficient that either Σ is diagonally
dominant (since then I + B(t)Σ is then strictly diagonally dominant, thus invertible)
or symmetric positive semidefinite (the assumptions used in our result below will imply
in particular that Σ is symmetric positive definite).

Finally, denoting M(t) := Σ (I +B(t)Σ)−1 (I + B(t)), it follows that

Φ∗(t+ 1) = M(t) . . .M(0)Φ(0) = M(t, 0)Φ(0), t ∈ N\{0} (C.1)

where M(t, 0) denotes the backward accumulation M(t, 0) := M(t) ·M(t−1) · . . . ·M(0).

C.2 Convergence Result

The representation of the dynamics derived in Appendix C.1 allows us to resort to
linear algebra results on the convergence of left products of matrices. Specifically,
Lorenz (2005, 2006) provides convergence results for left products of row stochastic
matrices—while as (for our specific context) not sufficient results are available on the
left product convergence of more general matrices (that have row sum one, but with
possibly negative entries). However, to guarantee that the individual matrices M(t)
are row stochastic in every period t ∈ N, we have to endow the social learning matrix
Σ with sufficient structure, which is given by the following definition.

Definition 1 (Symmetric Ultrametric Matrix). A n× n-matrix Σ is symmetric ultra-
metric if

(i) Σ is symmetric,

(ii) σii ≥ max {σij : j ∈ Ni}, ∀i ∈ N ,

(iii) σij ≥ min {σik; σkj}, ∀i, j, k ∈ N .

Property (i) means that interaction weights are symmetric, i.e. ∀i, j ∈ N σij = σji.
Property (ii) means that among all adults, the parents have the largest socialization
influence on their children. In general, the third property requires a sort of consistency
of the socialization patterns. It states that for any triple i, j, k ∈ N , if the socialization
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influence of j on child i is strictly smaller than that of k on child i, then it must not
hold that k has a strictly larger socialization influence on child j than on child i (since
σkj = σjk). This requirement can be interpreted as ruling out the existence of dynasties
that have a ‘too dominant’ social learning influence on other dynasties.28

We now get the following convergence result.

Proposition C1 (Convergence General). If Σ is symmetric ultrametric, then the cul-
tural traits in the society Φ(t) converge to a steady state.

Proof. The proof is presented in Subsection C.3 below.

In the proof of Proposition C1 we show that given that the social network Σ is
symmetric ultrametric, the submatrix of each essential communication class will con-
verge to a matrix of rank one (i.e. a consensus matrix). This is done by making use of
the special structure of Σ to show that each element of the law of motion M(t) is row
stochastic.29 Second, we can show that the entries of M(t) corresponding to strictly
positive entries of Σ can be bounded away from zero. This is due to the linearity of
the determinants of the minors of M(t) in every b∗i (t), and the boundedness of b∗i (t).
In the last step, we construct a sequence of sub-accumulations of M(ts+1, ts)s∈N such
that for each element the minimal strictly positive entry can be uniformly bounded
away from zero, which also implies “type-symmetry” and a strictly positive diagonal.
Thus, we can then apply the convergence result by Lorenz (2005), which implies that
the traits of each connected subset converge to the same point, i.e. all dynasties in a
communication class reach a homogeneous state. Note that due to the assumption of
symmetric ultrametric Σ all communication classes are essential and there is, hence, no
rest of the world.

Thus, endowing the social learning matrix Σ with sufficient structure, we arrive at a
general result: In the long-run the dynasties forming a communication class (i.e. forming
a component of the social network) will reach a steady state, and will end up with the
same cultural trait (cf. also Proposition 3). The traits across communication classes
may differ. Thus, symmetric ultrametric and connected societies (i.e. where every
dynasty is at least indirectly influenced by any other dynasty) will always converge to a
melting pot society even if objective functions are fairly general. Finally, we note that
the typical assumption in the literature is that oblique socialization is homogeneous in
the sense that all members are weighted equally, which translates to σij = σik for all
j, k 6= i. It is straightforward to see that this assumption along with symmetry implies
that the interaction structure is symmetric ultrametric and hence by Proposition C1
convergence also obtains in these cases.

In the quadratic utility case studied in Section 4.2, we needed the social network Σ to
be symmetric positive definite to ensure convergence, which is satisfied in a diagonally
dominant network. When utility is more general, we have shown here a qualitatively
similar result: a sufficient condition on the network for convergence is that it is sym-
metric ultrametric, which also means that the social network is symmetric, that the

28The third property (iii) of symmetric ultrametric matrices is a strong assumption, which we do
not need when studying the case of quadratic utility (cf. Proposition 4).

29For literature on inverses of symmetric ultrametric matrices see Nabben and Varga (1993, 1994),
Martinez et al. (1994), and for results on inverse-positive matrices see e.g. Fujimoto and Ranade (2004).
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diagonal is sufficiently large, and, additionally, that no dynasty has dominant influence
on others.

The assumption of symmetric ultrametric networks guarantees that the law of mo-
tion M(t) is row stochastic for all t ∈ N. However, the necessity to guarantee that all
M(t) are row stochastic significantly reduces the convergence path types that we can
analytically address. Row stochasticity of M(t) implies that dynamics of cultural traits
are such that all next–period cultural traits lie in the interval formed by the minimum
and the maximum trait intensity of the current period. Thus, we can state the following
straightforward Corollary.

Corollary C2. If Σ is symmetric ultrametric, then φi(t+ 1) ∈ conv{φj(t), j ∈ N} for
all i ∈ N and for all t ∈ N.

Proof. Corollary C2 follows directly from Proposition C1 since in the proof of which it
is shown that M(t) is row stochastic for each t ∈ N and hence φi(t + 1) = e′iMΦ(t) ∈
conv{φj(t), j ∈ N} for all i ∈ N , where ei is the i-th unit vector.

Corollary C2 particularly implies that each dynasty will converge to a cultural trait
that is a mixture of the initial cultural traits in the sense that it lies in the convex hull
of the cultural traits in period 0.

C.3 Proof of Proposition C1

This proof is organized into three essential steps. In the first step, we will show that if
Σ is symmetric ultrametric, then M(t) is row stochastic for every t ∈ N. In the second
step we will show that for every i, j ∈ N with Σij > 0, there exists a δij > 0 such
that for every t ∈ N, mij(t) ≥ δij. We use these results to show in the third step that
the backward accumulation matrices are type-symmetric and have a strictly positive
diagonal. This allows us to apply Theorem 2 of Lorenz (2005) to conclude that the
desired convergence result holds. For the first step, we also need the following.

Lemma C2 (Unit Eigenvectors). Let Σ be symmetric positive definite. Then, ∀x ∈ R
n,

∀t ∈ N, M(t)x = x if and only if Σx = x (i.e. x is a unit–eigenvector of M(t) if and
only if x is a unit–eigenvector of Σ).

Proof. Note that M(t) = Σ (I + B(t)Σ)−1 (I+B(t)) = (Σ−1 + B(t))
−1

(I+B(t)). That
the latter representation is well–defined if Σ is positive definite follows since Σ is then
invertible and also its inverse is positive definite. Thus, also Σ−1 + B(t) is positive
definite and invertible. Given this, both the ‘if’ and the ‘only if’ direction of the proof
can be directly seen from the following sequence of transformations: Σx = x ⇔ x =
Σ−1x ⇔ (B(t) + I)x = (B(t) + Σ−1)x ⇔ M(t)x = (B(t) + Σ−1)−1(B(t) + I)x = x.

1. In the first step of the (main) proof, we show that if Σ is symmetric ultrametric,
then M(t) is row stochastic for every t ∈ N. To do so, note first that since Σ is
symmetric ultrametric, it is also positive definite (see below). Hence, by Lemma C2
(and setting x = (1, 1, ..., 1)′) the row entries of M(t) = [mij(t)] sum up to one since the
same holds for Σ. Thus, M(t) is row stochastic if and only if M(t) has non-negative
entries (that isM(t) ≥ 0). Now, since I+B(t) is a diagonal matrix with strictly positive
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entries (since B(t) is non-negative by Corollary C1), M(t) = Σ (I + B(t)Σ)−1 (I+B(t))
is non-negative if and only if

Σ (I + B(t)Σ)−1 =
(

Σ−1 + B(t)
)−1

is non-negative (that this representation is well defined if Σ is positive definite has
been discussed in the proof of Lemma C2). In other words, we have to check whether
Σ−1 + B(t) is inverse–positive.

Now, since Σ is symmetric ultrametric, it follows that its inverse is a diagonally
dominant Stieltjes matrix (see Nabben and Varga, 1993, 1994 and Martinez et al.,
1994), i.e. a real symmetric positive definite matrix with positive diagonal and negative
off-diagonal entries. Thus, also Σ−1 + B(t) is a diagonally dominant Stieltjes matrix.
In particular, it is an M–matrix, the class of which is inverse–positive (on this issue,
see e.g. Fujimoto and Ranade, 2004). Hence, M(t) has only non-negative entries.

2. For the second step, we show first, that the map b∗i (t) = b∗i (φi(t), φ
d
Ni
(t)) is

bounded for every i ∈ N.

Lemma C3 (Boundedness of B∗(t)). Let Assumptions 1–3 hold. Then, ∀i ∈ N b∗i is
bounded for every φd

Ni
(t), φ(t) ∈ I. In particular,

lim
φd
Ni

(t)→φi(t)
b∗i (φi(t), φ

d
Ni
(t)) =

σiiv
′′
i

(

φi(t)|φi(t)
)

u′′
i (φi(t)|φi(t)) + σ2

iiv
′′
i

(

φi(t)|φi(t)
) < ∞.

Proof. Note that for x := φi(t), y := φd
Ni
(t), and f(x, y) := φd∗

i (x, y), b∗i is defined by
(see Corollary C1)

f(x, y)− x = b∗i (x, y) ((1− σii)x− (1− σii)y) . (C.2)

Let x ∈ I be given and without loss of generality assume that y ≥ x. First, note that
for every y ∈ I such that x 6= y it holds by Proposition 1 that 0 ≤ b∗i (x, y) ≤

1
1−σii

x−xmin

x−y

for xmin := min{z ∈ I}, since by Proposition 1 xmin ≤ f(x, y) ≤ x Further, by
Proposition 1 we get for σii = 1 that b∗i (x, y) = 0 for all y > x.

Hence we are left to show that limy↓x b
∗
i (x, y) < ∞ for σii < 1. Since x is fixed, we

denote f(y) := f(x, y), abusing notation. We get from (C.2),

lim
y↓x

b∗i (x, y) = lim
y↓x

1

1− σii

f(y)− x

y − x
= −

1

1− σii

f ′(x),

given differentiability of f at the point x, which we show subsequently. By the first
order condition, f(y) solves u′

i(f(y)|x) + σiiv
′
i(σii(f(y) + (1 − σii)y)|x) = 0. With the

implicit function theorem,

f ′(x) = −
(1− σii)σiiv

′′
i

(

σii(f(x) + (1− σii)x)|x
)

u′′
i (f(x)|x) + σ2

iiv
′′
i

(

σii(f(x) + (1− σii)x)|x
) . (C.3)
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By Proposition 1, we have f(x) = x, and hence by Assumption 1(c) the right-hand side
is well defined implying differentiability of f at x. We get

lim
y↓x

b∗i (x, y) = −
1

1− σii

f ′(x)

=
σiiv

′′
i

(

x|x
)

u′′
i (x|x) + σ2

iiv
′′
i

(

x|x
) ,

which is by A3 positive and bounded.

Now, we continue to show that for every i, j ∈ N with σij > 0 there exists a δij > 0
such that mij(t) ≥ δij for every t ∈ N. Again, since I +B(t) is a diagonal matrix with

strictly positive entries, we can restrict our attention to the matrix (Σ−1 +B(t))
−1

=:
A(t) = [aij(t)]. Consider any i, j ∈ N such that σij > 0. Since A(t) is non-negative by
step (1), it follows that sign (aij(t)) ∈ {0, sign (σij)}.

Let us rule out the case sign (aij(t)) = 0 for σij(t) > 0. To do so, let us compare

aij(t) = (−1)i+j |Σ
−1 +B(t)|ji

|Σ−1 + B(t)|
vs. (−1)i+j |Σ

−1|ji
|Σ−1|

= σij (C.4)

where |·|ji denotes the determinant of the (n − 1) × (n − 1) matrix derived from an
n× n matrix such that the j-th row and the i-th column are deleted. Note that since
Σ is positive definite, the same holds for its inverse and Σ−1 +B(t). It follows that the
determinants of the matrices Σ−1 and Σ−1 + B(t) are strictly positive and hence the
denominators of (C.4) are strictly positive.

Moreover, we have that for all i, j ∈ N , |Σ−1 + diag (b∗1(t), . . . , b
∗
n(t))|ji and

|Σ−1 + diag (b∗1(t), . . . , b
∗
n(t))| are linear in every individual element of {b∗1(t), . . . , b

∗
n(t)}

(to verify this most easily, consider the Leibniz formula). Since we have |Σ−1+B(t)| ≥ 0
for all b∗1(t), . . . , b

∗
n(t) ≥ 0, it holds that

∂(−1)i+j|Σ−1 +B(t)|ji
∂bk

≥ 0 (C.5)

and
∂|Σ−1 +B(t)|

∂bk
≥ 0, (C.6)

because otherwise the determinant would switch signs for bk → ∞ due to linearity in
bk, for all k ∈ {1, ..., n}.

Now, since b∗i is bounded by Lemma C3, we have bk(t) ∈ [0, b̄] for all t ∈ N. By
linearity of |Σ−1+B(t)|ij and |Σ−1+B(t)| in bk(t) for all k ∈ {1, ..., n} and compactness
of [0, b̄], we thus get existence of a minimum:

δ̂ij := min
k∈{1,...,n}

min
bk(t)∈[0,b̄]

= (−1)i+j |Σ
−1 + B(t)|ji

|Σ−1 + B(t)|
≤ (−1)i+j |Σ

−1|ji
|Σ−1|

Moreover, 0 < δ̂ij since both of nominator and denominator are bounded and strictly
positive due to (C.5) and (C.6) and because of boundedness of bk.
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Thus, if σij > 0, then aij(t) ≥ δ̂ij for all t ∈ N. Multiplication with the diagonal
matrix I+B(t) does not change this fact, even though the minimum might be attained
at different values of bk ∈ [0, b̄] and k ∈ {1, ..., n}. Thus, for all i, j ∈ N such that
σij > 0, there exists a δij > 0 such that mij(t) ≥ δij for all t ∈ N.

3. In the last step, we show that given the above, the left product of the matrices
M(t)M(t − 1) . . .M(0) converges such that the adopted traits of all dynasties of a
connected subset are identical (respectively, the communication classes in P(Σ) reach
a consensus). Recall that M(t′, t) denotes the accumulation M(t′, t) = M(t′)M(t′ −
1) . . .M(t) and PΣ(i) ⊆ N denotes the element of the partition P (Σ) which i belongs
to, i.e. PΣ(i) is such that PΣ(i) ∈ P (Σ) and i ∈ PΣ(i) .

First, note that all communication classes of Σ are essential by symmetry of Σ. By
the definition of P (Σ), we have that for all L ∈ P (Σ) and for all i, j ∈ L, there exists
a k ∈ {0, ..., |L|} such that Σk

ij > 0. Note that P (Σ) = P(M(t)) for all t ∈ N since
σij > 0 implies mij(t) ≥ δ for all t ∈ N as shown above and, since every communication
class of Σ is essential, mij(t) = 0 if j /∈ PΣ(i). Hence, for all L ∈ P (Σ) and for all
i, j ∈ L there exists a k ∈ {0, ..., |L|} such that M(t+ k, t)ij > 0 for all t ∈ N.

Now, consider a sequence of time steps (ts)s∈N such that t0 = 0 and ts+1 = ts +
L̄, where L̄ := max{|L| : L ∈ P (Σ)}, and consider the sequence of accumulations
(

M(ts+1, ts)
)

s∈N
. By the rules of matrix multiplication, we get that for any two row

stochastic A,B with a positive diagonal, (AB)ij > 0 if and only if Aij > 0 or Bij > 0.
Hence, for any L ∈ P (Σ) and for all i, j ∈ L, M(t+ |L|, t)ij > 0 for all t ∈ N since M(t)
is row stochastic with a positive diagonal. Moreover, M(t+|L|, t)ij = 0 if j /∈ PΣ(i) since
P (Σ) = P(M(t)) for all t ∈ N. Thus, for the accumulations M(ts+1, ts) it holds that
M(ts+1, ts)ij > 0 if and only if j ∈ PΣ(i). In particular, M(ts+1, ts) is type-symmetric
for all s ∈ N.

For a non-negative matrix A let min+(A) denote the lowest positive entry of A.
We have shown above that there exists a δ > 0 such that σij > 0 implies mij(t) ≥ δ
for all t ∈ N. Note that for any i, j ∈ L ∈ P (Σ), there exists a k ≤ |L| and a
sequence of dynasties (il)0≤l≤k with i0 = i and ik = j such that σil,il+1

> 0, implying

M(t + k, t)ij ≥
∏k−1

l=0 mil,il+1
(t + l) ≥ δk. Thus, for the accumulations M(ts+1, ts) it

holds that M(ts+1, ts)ij ≥ δts+1−ts if j ∈ PΣ(i) and M(ts+1, ts)ij = 0 else. Hence,
min+

(

M(ts+1, ts)
)

≥ δts+1−ts =: δ|L̄|.
In summary, we have shown that the backward accumulation matrices

(

M(ts+1, ts)
)

s∈N

have a uniform lower bound of the positive entries min+
(

M(ts+1, ts)
)

≥ δ|L̄|, are type-
symmetric and have a strictly positive diagonal. By Lorenz (2005), Theorem 2, we get
the desired result for the sequence

(

M(ts+1, ts)
)

s∈N
. Since limk→∞

∏k
s=0 M(ts+1, ts) =

limt→∞ M(t), we also establish the statement of the Proposition.
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